ترغب بنشر مسار تعليمي؟ اضغط هنا

SpiNNaker is an ARM-based processor platform optimized for the simulation of spiking neural networks. This brief describes the roadmap in going from the current SPINNaker1 system, a 1 Million core machine in 130nm CMOS, to SpiNNaker2, a 10 Million co re machine in 22nm FDSOI. Apart from pure scaling, we will take advantage of specific technology features, such as runtime adaptive body biasing, to deliver cutting-edge power consumption. Power management of the cores allows a wide range of workload adaptivity, i.e. processor power scales with the complexity and activity of the spiking network. Additional numerical accelerators will enhance the utility of SpiNNaker2 for simulation of spiking neural networks as well as for executing conventional deep neural networks. These measures should increase the simulation capacity of the machine by a factor $>$50. The interplay between the two domains, i.e. spiking and rate based, will provide an interesting field for algorithm exploration on SpiNNaker2. Apart from the platforms traditional usage as a neuroscience exploration tool, the extended functionality opens up new application areas such as automotive AI, tactile internet, industry 4.0 and biomedical processing.
This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supp ly voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا