ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the biggest problems faced by current and next-generation astronomical surveys is trying to produce large numbers of accurate cross identifications across a range of wavelength regimes with varying data quality and positional uncertainty. Unti l recently simple spatial nearest neighbour associations have been sufficient for most applications. However as advances in instrumentation allow more sensitive images to be made the rapid increase in the source density has meant that source confusion across multiple wavelengths is a serious problem. The field of far-IR and sub-mm astronomy has been particularly hampered by such problems. The poor angular resolution of current sub-mm and far-IR instruments is such that in a lot of cases there are multiple plausible counterparts for each source at other wavelengths. Here we present a new automated method of producing associations between sources at different wavelengths using a combination of spatial and SED information set in the Bayesian framework presented by Budavari & Szalay (2008). Testing of the technique is performed on both simulated catalogues of sources from GaLICS and real data from multi-wavelength observations of the SXDF. It is found that a single figure of merit, the Bayes factor, can be effectively used to describe the confidence in the match. Further applications of this technique to future Herschel datasets are discussed.
[abridged] We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic model built upon the millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain met hod to constrain the 6 free parameters that define the stellar and black-hole mass functions at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B-V colours, and the black hole-bulge mass relation, separately and combined, to obtain mean values, confidence limits and likelihood contours for the best fit model. Using each observational data set independently, we discuss how the SA model parameters affect each galaxy property and to what extent the correlations between them can lead to improved understandings of the physics of galaxy formation. When all the observations are combined, we find reasonable agreement between the majority of the previously published parameter values and our confidence limits. However, the need to suppress dwarf galaxy formation requires the strength of the supernova feedback to be significantly higher in our best-fit solution than in previous work. To balance this, we require the feedback to become ineffective in halos of lower circular velocity than before, so as to permit the formation of sufficient high-luminosity galaxies: unfortunately, this leads to an excess of galaxies around L*. Although the best-fit is formally consistent with the data, there is no region of parameter space that reproduces the shape of galaxy luminosity function across the whole magnitude-range. We discuss modifications to the semi-analytic model that might simultaneously improve the fit to the observed luminosity function and reduce the reliance on excessive supernova feedback in small halos.
We present the SWIRE Photometric Redshift Catalogue, 1025119 redshifts of unprecedented reliability and accuracy. Our method is based on fixed galaxy and QSO templates applied to data at 0.36-4.5 mu, and on a set of 4 infrared emission templates fitt ed to infrared excess data at 3.6-170 mu. The code involves two passes through the data, to try to optimize recognition of AGN dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, A_V, is allowed as a free parameter. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyze the performance of our method as a function of the number of photometric bands used in the solution and the reduced chi^2. For 7 photometric bands the rms value of (z_{phot}-z_{spec})/(1+z_{spec}) is 3.5%, and the percentage of catastrophic outliers is ~1%. We discuss the redshift distributions at 3.6 and 24 mu. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution. 10% of sources in the SWIRE photometric redshift catalogue have z >2, and 4% have z>3, so this catalogue is a huge resource for high redshift galaxies. A key parameter for understanding the evolutionary status of infrared galaxies is L_{ir}/L_{opt}, which can be interpreted as the specific star-formation rate for starbursts. For dust tori around Type 1 AGN, L_{tor}/L_{opt} is a measure of the torus covering factor and we deduce a mean covering factor of 40%.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا