ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - Sean M. Moran 2011
We have obtained long-slit spectra of 174 star-forming galaxies with stellar masses greater than 10^10 M_odot from the GALEX Arecibo SDSS (GASS) survey. These galaxies have both HI and H_2 mass measurements. The average metallicity profile is strikin gly flat out to R_90, the radius enclosing 90% of the r-band light. Metallicity profiles which decline steadily with radius are found primarily for galaxies in our sample with low stellar mass (Log(M_*)<10.2), concentration, and/or mean stellar mass density. Beyond ~R_90, however, around 10 percent of the galaxies in our sample exhibit a sharp downturn in metallicity. Remarkably, we find that the magnitude of the outer metallicity drop is well correlated with the total HI content of the galaxy (measured as f_HI=M_HI/M_*). We examine the radial profiles of stellar population ages and star formation rate densities, and conclude that the galaxies with largest outer metallicity drops are actively growing their stellar disks, with mass doubling times across the whole disk only one third as long as a typical GASS galaxy. We also describe a correlation between local stellar mass density and metallicity, which is valid across all galaxies in our sample. We argue that much of the recent stellar mass growth at the edges of these galaxies can be linked to the accretion or radial transport of relatively pristine gas from beyond the galaxies stellar disks.
We report new observations of the galaxy UGC8802 obtained through GASS, the GALEX Arecibo SDSS Survey, which show this galaxy to be in a remarkable evolutionary state. UGC8802 (GASS35981) is a disk galaxy with stellar mass M*=2x10^10 Msolar which app ears to contain an additional 2.1x10^10 Msolar of HI gas. New millimeter observations with the IRAM 30m telescope indicate a molecular gas mass only a tenth this large. Using deep long-slit spectroscopy, we examine the spatially resolved star formation rate and metallicity profiles of GASS35981 for clues to its history. We find that the star formation surface density in this galaxy is low (Sigma_SFR=0.003 Msolar/yr/kpc^2) and that the star formation is spread remarkably evenly across the galaxy. The low molecular gas masses measured in our three IRAM pointings are largely consistent with the total star formation measured within the same apertures. Our MMT long-slit spectrum reveals a sharp drop in metallicity in the outer disk of GASS35981. The ratio of current star formation rate to existing stellar mass surface density in the outer disk is extremely high, implying that all the stars must have formed within the past ~1Gyr. At current star formation rates, however, GASS35981 will not consume its HI reservoir for another 5-7 Gyr. Despite its exceptionally large gas fraction for a galaxy this massive, GASS35981 has a regular rotation curve and exhibits no sign of a recent interaction or merger. We speculate that GASS35981 may have acquired its gas directly from the inter-galactic medium, and that it and other similar galaxies identified in the GASS survey may provide rare local glimpses of gas accretion processes that were more common during the prime epoch of disk galaxy formation at z~1.
SDSSJ092712.65+294344.0 was identified by the SDSS as a quasar, but has the unusual property of having two emission line systems offset by 2650 km/s. One of these contains the usual combination of broad and narrow lines, the other only narrow lines. In the first paper commenting on this system (Komossa et al. 2008), it was interpreted as a galaxy in which a pair of black holes had merged, imparting a several thousand km/s recoil to the new, larger black hole. In two other papers (Bogdanovic, Eracleous & Sigurdsson 2008; Dotti et al. 2008), it was interpreted as a small-separation binary black hole. We propose a new interpretation: that this system is a more distant analog of NGC1275, a large and a small galaxy interacting near the center of a rich cluster.
54 - J. E. Geach 2008
We present the results of a Spitzer Infrared Spectrograph (IRS) survey of 24um-selected luminous infrared galaxies (LIRGs, L_IR > 10^11 L_sun) in the rich cluster Cl0024+16 at z=0.4. Optically, these LIRGs resemble unremarkable spiral galaxies with e (a)/e(c) spectral classifications and [Oii]-derived star formation rates (SFRs) of <2 M_sun/yr, generally indistinguishable from the quiescent star forming population in the cluster. Our IRS spectra show that the majority of the 24um-detected galaxies exhibit polycyclic aromatic hydrocarbon (PAH) emission with implied SFRs ~30-60 M_sun/yr, with only one (<10%) of the sample displaying unambiguous evidence of an active galactic nucleus in the mid-infrared. This confirms the presence of a large population of obscured starburst galaxies in distant clusters, which comprise the bulk of the star formation occurring in these environments at z~0.5. We suggest that, although several mechanisms could be at play, these dusty starbursts could be the signature of an important evolutionary transition converting gas-rich spiral galaxies in distant clusters into the passive, bulge-dominated lenticular galaxies that become increasingly abundant in the cores of rich clusters in the ~4Gyr to the present day.
We present new results from our comprehensive comparative survey of two massive, intermediate redshift galaxy clusters, Cl0024+17 (z=0.39) and MS0451-03 (z=0.54). We identify and study several key classes of `transition objects whose stellar populati ons or dynamical states indicate a recent or ongoing change in morphology and star formation rate. For the first time, we have been able to conclusively identify spiral galaxies in the process of transforming into S0 galaxies. This has been accomplished by locating both spirals whose star formation is being quenched as well as their eventual successors, the recently created S0s. Differences between the two clusters in both the timescales and spatial location of this conversion process allow us to evaluate the relative importance of several proposed physical mechanisms that could be responsible for the transformation. Combined with other diagnostics that are sensitive to either ICM-driven galaxy evolution or galaxy-galaxy interactions, we describe a self-consistent picture of galaxy evolution in clusters. We find that spiral galaxies within infalling groups have already begun a slow process of conversion into S0s primarily via gentle galaxy-galaxy interactions. The fates of spirals upon reaching the core of the cluster depend heavily on the cluster ICM, with rapid conversion of all remaining spirals into S0s via ram-pressure stripping in clusters where the ICM is dense. In the presence of a less-dense ICM, the conversion continues at a slower pace, with galaxy-galaxy interactions continuing to play a role along with `starvation by the ICM. We conclude that the buildup of the local S0 population through the transformation of spiral galaxies is a heterogeneous process that nevertheless proceeds robustly across a variety of different environments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا