ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-$mu$m to the secondary frequency standard of this spectral region, a CO2 laser stabilized on a saturated absorption line of OsO4. The stability and accuracy of the standard a re transferred to the QCL resulting in a line width of the order of 10 Hz, and leading to our knowledge to the narrowest QCL to date. The locked QCL is then used to perform absorption spectroscopy spanning 6 GHz of NH3 and methyltrioxorhenium, two species of interest for applications in precision measurements.
179 - Sean K. Tokunaga 2013
To date no experiment has reached the level of sensitivity required to observe weak nuclear force induced parity violation (PV) energy differences in chiral molecules. In this paper, we present the approach, adopted at Laboratoire de Physique des Las ers (LPL), to measure frequency differences in the vibrational spectrum of enantiomers. We review different spectroscopic methods developed at LPL leading to the highest resolutions, as well as 20 years of CO2 laser stabilization work enabling such precise measurements. After a first attempt to observe PV vibrational frequency shifts using sub-Doppler saturated absorption spectroscopy in a cell, we are currently aiming at an experiment based on Doppler-free two-photon Ramsey interferometry on a supersonic beam. We report on our latest progress towards observing PV with chiral organo-metallic complexes containing a heavy rhenium atom.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا