ترغب بنشر مسار تعليمي؟ اضغط هنا

A transducer of single photons between microwave and optical frequencies can be used to realize quantum communication over optical fiber links between distant superconducting quantum computers. A promising scalable approach to constructing such a tra nsducer is to use ensembles of quantum emitters interacting simultaneously with electromagnetic fields at optical and microwave frequencies. However, inhomogeneous broadening in the transition frequencies of the emitters can be detrimental to this collective action. In this article, we utilise a gradient-based optimization strategy to design the temporal shape of the laser field driving the transduction system to mitigate the effects of inhomogeneous broadening. We study the improvement of transduction efficiencies as a function of inhomogeneous broadening in different single-emitter cooperativity regimes and correlate it with a restoration of superradiance effects in the emitter ensembles. Furthermore, to assess the optimality of our pulse designs, we provide certifiable bounds on the design problem and compare them to the achieved performance.
We present the point-coupling Hamiltonian as a model for frequency-independent linear optical devices acting on propagating optical modes described as a continua of harmonic oscillators. We formally integrate the Heisenberg equations of motion for th is Hamiltonian, calculate its quantum scattering matrix, and show that an application of the quantum scattering matrix on an input state is equivalent to applying the inverse of classical scattering matrix on the annihilation operators describing the optical modes. We show how to construct the point-coupling Hamiltonian corresponding to a general linear optical device described by a classical scattering matrix, and provide examples of Hamiltonians for some commonly used linear optical devices. Finally, in order to demonstrate the practical utility of the point-coupling Hamiltonian, we use it to rigorously formulate a matrix-product-state based simulation for time-delayed feedback systems wherein the feedback is provided by a linear optical device described by a scattering matrix as opposed to a hard boundary condition (e.g. a mirror with less than unity reflectivity).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا