ترغب بنشر مسار تعليمي؟ اضغط هنا

A uniformly accelerated charged particle feels the vacuum as thermally excited and fluctuates around the classical trajectory. Then we may expect additional radiation besides the Larmor radiation. It is called Unruh radiation. In this report, we revi ew the calculation of the Unruh radiation with an emphasis on the interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. Our calculation is based on a stochastic treatment of the particle under a uniform acceleration. The basics of the stochastic equation are reviewed in another report in the same proceeding. In this report, we mainly discuss the radiation and the interference effect.
An accelerated particle sees the Minkowski vacuum as thermally excited, which is called the Unruh effect. Due to an interaction with the thermal bath, the particle moves stochastically like the Brownian motion in a heat bath. It has been discussed th at the accelerated charged particle may emit extra radiation (the Unruh radiation) besides the Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. In this reports, we review our recent analysis on the issue of the Unruh radiation. In this report, we particularly consider the thermalization of an accelerated particle in the scalar QED, and derive the relaxation time of the thermalization.
An accelerated particle sees the Minkowski vacuum as thermally excited, and the particle moves stochastically due to an interaction with the thermal bath. This interaction fluctuates the particles transverse momenta like the Brownian motion in a heat bath. Because of this fluctuating motion, it has been discussed that the accelerated charged particle emits extra radiation (the Unruh radiation) in addition to the classical Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers constructed in near future. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the fluctuating motion. In fact, in the case of an internal detector where the Heisenberg equation of motion can be solved exactly, there is no additional radiation after the thermalization is completed. In this paper, we revisit the issue in the case of an accelerated charged particle in the scalar-field analog of QED. We prove the equipartition theorem of transverse momenta by investigating a stochastic motion of the particle, and show that the Unruh radiation is partially canceled by an interference effect.
We show that the N=8 superconformal Bagger-Lambert theory based on the Lorentzian 3-algebra can be derived by taking a certain scaling limit of the recently proposed N=6 superconformal U(N)xU(N) Chern-Simons-matter theories at level (k, -k). The scal ing limit (and Inonu-Wigner contraction) is to scale the trace part of the bifundamental fields as X_0 -> lambda^{-1} X_0 and an axial combination of the two gauge fields as B_{mu} -> lambda B_mu. Simultaneously we scale the level as k -> lambda^{-1} k and then take lambda -> 0 limit. Interestingly the same constraint equation partial^2 X_0=0 is derived by imposing finiteness of the action. In this scaling limit, M2-branes are located far from the origin of C^4/Z_k compared to their fluctuations and Z_k identification becomes a circle identification. Hence the scaled theory describes N=8 supersymmetric theory of 2-branes with dynamical coupling. The coupling constant is promoted to a space-time dependent SO(8) vector X_0^I and we show that the scaled theory has a generalized conformal symmetry as well as manifest SO(8) with the transformation of the background fields X_0^I.
Based on the recent proposal of N=8 superconformal gauge theories of the multiple M2 branes, we derive (2+1)-dimensional supersymmetric Janus field theories with a space-time dependent coupling constant. From the original Bagger-Lambert model, we get a supersymmetric field theory with a similar action to the N D2 branes, but the coupling varies with the space-time as a function of the light-cone coordinate, g(t+x). Half of the supersymmetries can be preserved. We further investigate the M2 brane action deformed by mass and Myers-like terms. In this case, the final YM action is deformed by mass and Myers terms and the coupling behaves as exp(mu x) where mu is a constant mass parameter. Weak coupling gauge theory is continuously changed to strong coupling in the large x region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا