ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravi tational self-force (GSF) effect, including conservative corrections. The GSF information is encapsulated in an analytic interpolation formula based on numerical GSF data for over a thousand sample geodesic orbits. We assess the importance of including conservative GSF corrections in waveform models for gravitational-wave searches.
It is a well known analytic result in general relativity that the 2-dimensional area of the apparent horizon of a black hole remains invariant regardless of the motion of the observer, and in fact is independent of the $ t=constant $ slice, which can be quite arbitrary in general relativity. Nonetheless the explicit computation of horizon area is often substantially more difficult in some frames (complicated by the coordinate form of the metric), than in other frames. Here we give an explicit demonstration for very restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the Kerr-Schild coordinate expression for these spacetimes they have an explicit Lorentz-invariant form. We consider {it booste
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا