ترغب بنشر مسار تعليمي؟ اضغط هنا

The fundamentals and higher vibrationally excited states for the N$_3^+$ ion in its electronic ground state have been determined from quantum bound state calculations on 3-dimensional potential energy surfaces (PESs) at the CCSD(T)-F12 and MRCI+Q lev els of theory. The vibrational fundamentals are at 1130 cm$^{-1}$ ($ u_1$, symmetric stretch), 807 cm$^{-1}$ ($ u_3$, asymmetric stretch), and 406 cm$^{-1}$ ($ u_2$, bend) on the higher-quality CCSD(T)-F12 surface. For $ u_1$, the calculations are close to the estimated frequency from experiment (1170 cm$^{-1}$) and previous calculationscite{rosmus.n3:1994} which find it at 1190 cm$^{-1}$. Calculations of the vibrational states on the MRCI+Q PES are in qualitative agreement with those using the CCSD(T)-F12 PES. Analysis of the reference CASSCF wave function for the MRCI+Q calculations provides further insight into the shape of the PES and lends support for the reliability of Hartree-Fock as the reference wave function for the coupled cluster calculations. According to this, N$_3^+$ has mainly single reference character in all low-energy regions of its electronic ground state ($^3$A$$) 3d PES.
An overview of computational methods to describe high-dimensional potential energy surfaces suitable for atomistic simulations is given. Particular emphasis is put on accuracy, computability, transferability and extensibility of the methods discussed . They include empirical force fields, representations based on reproducing kernels, using permutationally invariant polynomials, and neural network-learned representations and combinations thereof. Future directions and potential improvements are discussed primarily from a practical, application-oriented perspective.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا