ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions between planetesimals ; the results are used to isolate the effects of different impact parameters on collision outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering, merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-collision bodies. The scaling laws are used to calculate maps of collision outcomes as a function of mass ratio, impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime during planet formation. The analytic collision model presented in this work will significantly improve the physics of collisions in numerical simulations of planet formation and collisional evolution. (abstract abridged)
Haumea, a rapidly rotating elongated dwarf planet (~ 1500 km in diameter), has two satellites and is associated with a family of several smaller Kuiper Belt objects (KBOs) in similar orbits. All members of the Haumea system share a water ice spectral feature that is distinct from all other KBOs. The relative velocities between the Haumea family members are too small to have formed by catastrophic disruption of a large precursor body, which is the process that formed families around much smaller asteroids in the Main Belt. Here we show that all of the unusual characteristics of the Haumea system are explained by a novel type of giant collision: a graze-and-merge impact between two comparably sized bodies. The grazing encounter imparted the high angular momentum that spun off fragments from the icy crust of the elongated merged body. The fragments became satellites and family members. Giant collision outcomes are extremely sensitive to the impact parameters. Compared to the Main Belt, the largest bodies in the Kuiper Belt are more massive and experience slower velocity collisions; hence, outcomes of giant collisions are dramatically different between the inner and outer solar system. The dwarf planets in the Kuiper Belt record an unexpectedly large number of giant collisions, requiring a special dynamical event at the end of solar system formation.
The outcome of collisions between small icy bodies, such as Kuiper belt objects, is poorly understood and yet a critical component of the evolution of the trans-Neptunian region. The expected physical properties of outer solar system materials (high porosity, mixed ice-rock composition, and low material strength) pose significant computational challenges. We present results from catastrophic small body collisions using a new hybrid hydrocode to $N$-body code computational technique. This method allows detailed modeling of shock propagation and material modification as well as gravitational reaccumulation. Here, we consider a wide range of material strengths to span the possible range of Kuiper belt objects. We find that the shear strength of the target is important in determining the collision outcome for 2 to 50-km radius bodies, which are traditionally thought to be in a pure gravity regime. The catastrophic disruption and dispersal criteria, $Q_D^*$, can vary by up to a factor of three between strong crystalline and weak aggregate materials. The material within the largest reaccumulated remnants experiences a wide range of shock pressures. The dispersal and reaccumulation process results in the material on the surfaces of the largest remnants having experienced a wider range of shock pressures compared to material in the interior. Hence, depending on the initial structure and composition, the surface materials on large, reaccumulated bodies in the outer solar system may exhibit complex spectral and albedo variations. Finally, we present revised catastrophic disruption criteria for a range of impact velocities and material strengths for outer solar system bodies.
Collisions are a major modification process over the history of the Kuiper Belt. Recent work illuminates the complex array of possible outcomes of individual collisions onto porous, volatile bodies. The cumulative effects of such collisions on the su rface features, composition, and internal structure of Kuiper Belt Objects are not yet known. In this chapter, we present the current state of knowledge of the physics of cratering and disruptive collisions in KBO analog materials. We summarize the evidence for a rich collisional history in the Kuiper Belt and present the range possible physical modifications on individual objects. The question of how well present day bodies represent primordial planetesimals can be addressed through future studies of the coupled physical and collisional evolution of Kuiper Belt Objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا