ترغب بنشر مسار تعليمي؟ اضغط هنا

Grains in disks around young stars grow from interstellar submicron sizes to planetesimals over the course of several Myr. Thermal emission of large grains or pebbles can be best observed at cm wavelengths. However, other emission mechanisms can cont ribute. We aim to determine the mechanisms of cm emission for 3 T Tauri stars. WW Cha and RU Lup were recently found to have grain growth at least up to mm sizes in their circumstellar disks. CS Cha has similar indications for grain growth in its circumbinary disk. The T Tauri stars WW Cha and RU Lup were monitored over several years at mm and cm wavelengths, using ATCA. The new ATCA 7 mm system was also used to observe CS Cha. WW Cha was detected on several occasions at 7 and 16 mm. We obtained one detection of WW Cha at 3 cm and upper limits only at 6 cm. The emission at 16 mm was stable over days, months and years, but the emission at 3 cm is found to be variable. RU Lup was detected at 7 mm. It was observed at 16 mm 3 times and at 3 and 6 cm 4 times and found to be variable in all 3 wavebands. CS Cha was detected at 7 mm, but the S/N was too low to resolve the gap in the circumbinary disk. The emission at 3, 7 and 16 mm for WW Cha is well explained by thermal emission from mm and cm-sized pebbles. The cm spectral index is consistent with the emission from an optically-thick ionised wind, but the high variability of the cm emission points to a non-thermal contribution. The SEDs of RU Lup and CS Cha from 1 to 7 mm are consistent with thermal emission from mm-sized grains. The variability of the longer-wavelength emission for RU Lup and the negative spectral index suggest non-thermal emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا