ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy is an essential tool in understanding and manipulating quantum systems, such as atoms and molecules. The model describing spectroscopy includes a multipole-field interaction, which leads to established spectroscopic selection rules, and an interaction that is quadratic in the field, which is often neglected. However, spectroscopy using the quadratic (ponderomotive) interaction promises two significant advantages over spectroscopy using the multipole-field interaction: flexible transition rules and vastly improved spatial addressability of the quantum system. For the first time, we demonstrate ponderomotive spectroscopy by using optical-lattice-trapped Rydberg atoms, pulsating the lattice light at a microwave frequency, and driving a microwave atomic transition that would otherwise be forbidden by established spectroscopic selection rules. This new ability to measure frequencies of previously inaccessible transitions makes possible improved determinations of atomic characteristics and constants underlying physics. In the spatial domain, the resolution of ponderomotive spectroscopy is orders of magnitude better than the transition frequency (and the corresponding diffraction limit) would suggest, promising single-site addressability in a dense particle array for quantum control and computing applications. Future advances in technology may allow ponderomotive spectroscopy to be extended to ground-state atoms and trapped molecules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا