ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the coherent manipulation of interacting Rydberg atoms placed inside a high-finesse optical cavity for the deterministic preparation of strongly coupled light-matter systems. We consider a four-level diamond scheme with one common Rydb erg level for N interacting atoms. One side of the diamond is used to excite the atoms into a collective `superatom Rydberg state using either {pi}-pulses or stimulated Raman adiabatic passage (STIRAP) pulses. The upper transition on the other side of the diamond is used to transfer the collective state to one that is coupled to a field mode of an optical cavity. Due to the strong interaction between the atoms in the Rydberg level, the Rydberg blockade mechanism plays a key role in the deterministic quantum state synthesis of the atoms in the cavity. We use numerical simulation to show that non-classical states of light can be generated and that the state that is coupled to the cavity field is a collective one. We also investigate how different decay mechanisms affect this interacting many-body system. We also analyze our system in the case of two Rydberg excitations within the blockade volume. The simulations are carried out with parameters corresponding to realizable high-finesse optical cavities and alkali atoms like rubidium.
We consider an extension of the Standard Model involving a singlet Higgs and down type vector-like quarks in the light of the current LHC Higgs data. For a good range of the parameters of the Higgs potential, and a mass range for the heavy vector-lik e quark, we find that the singlet heavy Higgs arising from the production and decay of the vector-like quarks give rise to (2b~4t) signal. The subsequent decay of the top quarks to $b W^{+}$ give rise to a final state with six b quarks, two same-sign charged leptons and missing transverse momenta with observable cross-sections at the 14 TeV run of the Large Hadron Collider. The Standard Model background for such a final state is practically negligible.
We investigate the effect of introducing a sequential generation of chiral fermions in the Higgs Triplet Model with nontrivial mixing between the doublet and triplet Higgs. We use the available LHC data for Higgs boson production and decay rates, the constraints on the fourth generation masses, and impose electroweak precision constraints from the S, T and U parameters. Our analysis shows that an SM-like Higgs boson state at ~125 GeV can be accommodated in the Higgs Triplet Model with four generations, and thus, that four generations survive collider and electroweak precision constraints in models beyond SM.
New physics at the TeV scale is highly anticipated at the LHC. New particles with color, if within the LHC energy reach, will be copiously produced. One such particle is a diquark, having the quantum numbers of two quarks, and can be a scalar or a ve ctor. It will decay to two light quarks, or two top quarks, or a top and a light quark, (up or down type depending on the quantum number of the produced diquark). If singly produced, it can be looked for as a dijet resonance, or as giving extra contribution to the single top production or tt production. In this work, we consider a color sextet vector diquark having the quantum number of (ud) type, its resonance production, and the subsequent decay to tb, giving rise to excess contribution to the single top production. Even though the diquark mass is large, its strong resonance production dominate the weak production of tb for a wide range of the diquark mass. Also its subsequent decay to tb produce a very hard b-jet compared to the usual electroweak production. In addition, the missing energy in the final state event is much larger from the massive diquark decays. Thus, with suitable cuts, the final state with b, bar{b} and a charged lepton together with large missing energy stands out compared to the Standard Model background. We make a detailed study of both the signal and the background. We find that such a diquark is accessible at the 7 TeV LHC upto a mass of about 3.3 TeV with the luminosity 1 fb^{-1}, while the reach goes up to about 4.3 TeV with a luminosity of 10 fb^{-1}.
We explore a scenario in the Standard Model in which dimension four Yukawa couplings are either forbidden by a symmetry, or happen to be very tiny, and the Yukawa interactions are dominated by effective dimension six interactions. In this case, the H iggs interactions to the fermions are enhanced in a large way, whereas its interaction with the gauge bosons remains the same as in the Standard Model. In hadron colliders, Higgs boson production via gluon gluon fusion increases by a factor of nine. Higgs decay widths to fermion anti-fermion pairs also increase by the same factor, whereas the decay widths to photon photon and gamma Z are reduced. Current Tevatron exclusion range for the Higgs mass increases to ~ 142-200 GeV in our scenario, and new physics must appear at a scale below a TeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا