ترغب بنشر مسار تعليمي؟ اضغط هنا

The central limit theorem for convex bodies says that with high probability the marginal of an isotropic log-concave distribution along a random direction is close to a Gaussian, with the quantitative difference determined asymptotically by the Cheeg er/Poincare/KLS constant. Here we propose a generalized CLT for marginals along random directions drawn from any isotropic log-concave distribution; namely, for $x,y$ drawn independently from isotropic log-concave densities $p,q$, the random variable $langle x,yrangle$ is close to Gaussian. Our main result is that this generalized CLT is quantitatively equivalent (up to a small factor) to the KLS conjecture. Any polynomial improvement in the current KLS bound of $n^{1/4}$ in $mathbb{R}^n$ implies the generalized CLT, and vice versa. This tight connection suggests that the generalized CLT might provide insight into basic open questions in asymptotic convex geometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا