ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose the creation of an atomic analogue of electronic snake states in which electrons move along one-dimensional snake-like trajectory in the presence of a suitable magnetic field gradient. To this purpose, we propose the creation of laser indu ced synthetic gauge field inside a three-mirror ring cavity and show that under appropriate conditions, the atomic trajectory in such configuration mimics snake-state like motion. We analyse this motion using semi-classical and full quantum mechanical techniques for a single atom. We provide a detailed comparison of the original electronic phenomena and its atomic analogue in terms of relevant energy and length scales and conclude by briefly pointing out the possibility of consequent study of ultra cold condensate in similar ring-cavity configuration.
We study the properties of a $2+1$ dimensional Sonic black hole (SBH) that can be realised, in a quasi-two-dimensional two-component spin-orbit coupled Bose-Einstein condensate (BEC). The corresponding equation for phase fluctuations in the total den sity mode that describes phonon field in the hydrodynamic approximation is described by a scalar field equation in $2+1$ dimension whose space-time metric is significantly different from that of the SBH realised from a single component BEC that was studied experimentally, and, theoretically meticulously in literature. Given the breakdown of the irrotationality constraint of the velocity field in such spin-orbit coupled BEC, we study in detail how the time evolution of such condensate impacts the various properties of the resulting SBH. By time evolving the condensate in a suitably created laser-induced potential, we show that such a sonic black hole is formed, in an annular region bounded by inner and outer event horizon as well as elliptical ergo-surfaces. We observe amplifying density modulation due to the formation of such sonic horizons and show how they change the nature of analogue Hawking radiation emitted from such sonic black hole by evaluating the density-density correlation at different times, using the truncated Wigner approximation (TWA) for different values of spin-orbit coupling parameters. We finally investigate the thermal nature of such analogue Hawking radiation.
The energy spectrum of massless Dirac fermions in graphene under two dimensional periodic magnetic modulation having square lattice symmetry is calculated. We show that the translation symmetry of the problem is similar to that of the Hofstadter or T KNN problem and in the weak field limit the tight binding energy eigenvalue equation is indeed given by Harper Hofstadter hamiltonian. We show that due to its magnetic translational symmetry the Hall conductivity can be identified as a topological invariant and hence quantized. We thus extend the idea of Quantum Hall Effect to magnetically modulated two dimensional electron system. Finally we indicate possible experimental systems where this may be verified.
150 - Puja Mondal 2018
The transport properties of the surface charge carriers of a three dimensional topological insulator under a terahertz (THz) field along with a resonant double barrier structure is theoretically analyzed within the framework of Floquet theory to expl ore the possibility of using such a device for photodetection purpose. We show that due to the contribution of elastic and inelastic scattering processes in the resulting transmission sidebands are formed in the conductance spectrum in somewhat similar way as in an optical cavity and this information can be used to detect the frequency of an unknown THz radiation. The dependence of the conductance on the bias voltage, the effect of THz radiation on resonances and the influence of zero energy points on the transmission spectrum are also discussed.
141 - Puja Mondal 2018
We theoretically investigate electrical transport in a quantum Hall system hosting bulk and edge current carrying states. Spatially varying magnetic and electric confinement creates pairs of current carrying lines that drift in the same or opposite d irections depending on whether confinement is applied by a magnetic split gate or a magnetic strip gate. We study the electronic structure through calculations of the local density of states and conductivity of the channel as a function of the chirality and wave-function overlap of these states. We demonstrate a shift of the conductivity peaks to high or low magnetic field depending on chirality of pairs of edge states and the effect of chirality on backscattering amplitude associated with collisional processes.
346 - Bikash Padhi 2016
In this article we present a pedagogical discussion of some of the optomechanical properties of a high finesse cavity loaded with ultracold atoms in laser induced synthetic gauge fields of different types. Essentially, the subject matter of this arti cle is an amalgam of two sub-fields of atomic molecular and optical (AMO) physics namely, the cavity optomechanics with ultracold atoms and ultracold atoms in synthetic gauge field. After providing a brief introduction to either of these fields we shall show how and what properties of these trapped ultracold atoms can be studied by looking at the cavity (optomechanical or transmission) spectrum. In presence of abelian synthetic gauge field we discuss the cold-atom analogue of Shubnikov de Haas oscillation and its detection through cavity spectrum. Then, in the presence of a non-abelian synthetic gauge field (spin-orbit coupling), we see when the electromagnetic field inside the cavity is quantized, it provides a quantum optical lattice for the atoms, leading to the formation of different quantum magnetic phases. We also discuss how these phases can be explored by studying the cavity transmission spectrum.
We show that the general quantum state of synthetically spin-orbit coupled ultra cold bosonic atom whose condensate was experimentally created recently ( Y. J. Lin {it et al.}, Nature, {bf 471}, 83, (2011)), shows entanglement between motional degree s of freedom ( momentum) and internal degrees of freedom (hyperfine spin). We demonstrate the violation of Bell-like inequality (CHSH) for such states that provides a unique opportunity to verify fundamental principle like quantum non-contextuality for commutating observables which are not spatially separated. We analyze in detail the Rabi oscillation executed by such atom-laser system and how that influneces quantities like entanglement entropy, violation of Bell like Inequality etc. We also discuss the implication of our result in testing the quantum non-contextuality and Bells Inequality vioaltion by macroscopic quantum object like Bose-Einstein Condensate of ultra cold atoms.
The surface states of the three dimensional (3D) Topological Insulators are described by two-dimensional (2D) massless dirac equation. A gate voltage induced one dimensional potential barrier on such surface creates a discrete bound state in the forb idden region outside the dirac cone. Even for a single barrier it is shown such bound state can create electrostatic analogue of Shubnikov de Haas oscillation which can be experimentally observed for relatively smaller size samples. However when these surface states are exposed to a periodic arrangement of such gate voltage induced potential barriers, the band structure of the same got nontrivially modified. This is expected to significantly alters the properties of macroscopic system. We also suggest that in suitable limit the system may offer ways to control electron spin electrostatically which may be practically useful.
We start by reviewing the concept of gauge invariance in quantum mechanics, for Abelian and Non-Ableian cases. Then we idescribe how the various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical w ave function while adiabatically evolving in a parameter space. Subsequently we show how this concept is exploited to generate light induced gauge field for neutral ultra cold bosonic atoms. As an example of such light induced Abelian and Non Abelian gauge field for ultra cold atoms we disucss ultra cold atoms in a rotating trap and creation of synthetic spin orbit coupling for ultra cold atomic systems using Raman lasers.
An analysis of electron transport in graphene is presented in the presence of various arrangement of delta-function like magnetic barriers. The motion through one such barrier gives an unusual non specular refraction leading to asymmetric transmissio n. The symmetry is restored by putting two such barriers in opposite direction side by side. Periodic arrangements of such barriers can be used as Bragg reflectors whose reflectivity has been calculated using a transfer matrix formalism. Such Bragg reflectors can be used to make resonant cavities. We also analyze the associated band structure for the case of infinite periodic structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا