ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform nonperturbative studies of N=4 super Yang-Mills theory by Monte Carlo simulation. In particular, we calculate the correlation functions of chiral primary operators to test the AdS/CFT correspondence. Our results agree with the predictions obtained from the AdS side that the SUSY non-renormalization property is obeyed by the three-point functions but emph{not} by the four-point functions investigated in this paper. Instead of the lattice regularization, we use a novel regularization of the theory based on an equivalence in the large-N limit between the N=4 SU(N) theory on RxS^3 and a one-dimensional SU(N) gauge theory known as the plane-wave (BMN) matrix model. The equivalence extends the idea of large-N reduction to a curved space and, at the same time, overcomes the obstacle related to the center symmetry breaking. The adopted regularization preserves 16 SUSY, which is crucial in testing the AdS/CFT correspondence with the available computer resources. The only SUSY breaking effects, which come from the momentum cutoff $Lambda$ in R direction, are made negligible by using sufficiently large $Lambda$.
We perform Monte Carlo calculation of correlation functions in 4d N=4 super Yang-Mills theory on R*S^3 in the planar limit. In order to circumvent the well-known problem of lattice SUSY, we adopt the idea of a novel large-N reduction, which reduces t he calculation to that of corresponding correlation functions in the plane-wave matrix model or the BMN matrix model. This model is a 1d gauge theory with 16 supersymmetries, which can be simulated in a manner similar to the recent studies of the D0-brane system. We study two-point and three-point functions of chiral primary operators at various coupling constant, and find that they agree with the free theory results up to overall constant factors. The ratio of the overall factors for two-point and three-point functions agrees with the prediction of the AdS/CFT correspondence.
We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we per form numerical computations up to the number of particles one million. We report that if the number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose gas subject to Dirichlet boundary condition reveals a thermodynamic instability. Accordingly we demonstrate - for the first time - that, a system consisting of finite number of particles can exhibit a discontinuous phase transition featuring a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number, 7616 can be regarded as a characteristic number of cube that is the geometric shape of the box.
We test the recent claim that supersymmetric matrix quantum mechanics with mass deformation preserving maximal supersymmetry can be used to study N=4 super Yang-Mills theory on RxS^3 in the planar limit. When the mass parameter is large, we can integ rate out all the massive fluctuations around a particular classical solution, which corresponds to RxS^3. The resulting effective theory for the gauge field moduli at finite temperature is studied both analytically and numerically, and shown to reproduce the deconfinement phase transition in N=4 super Yang-Mills theory on RxS^3 at weak coupling. This transition was speculated to be a continuation of the conjectured phase transition at strong coupling, which corresponds to the Hawking-Page transition based on the gauge-gravity duality. By choosing a different classical solution of the same model, one can also reproduce results for gauge theories on other space-time such as RxS^3/Z_q and RxS^2. All these theories can be studied at strong coupling by the new simulation method, which was used successfully for supersymmetric matrix quantum mechanics without mass deformation.
114 - Sang-Woo Kim , Jae Dong Noh 2008
We introduce a correlated static model and investigate a percolation transition. The model is a modification of the static model and is characterized by assortative degree-degree correlation. As one varies the edge density, the network undergoes a pe rcolation transition. The percolation transition is characterized by a weak singular behavior of the mean cluster size and power-law scalings of the percolation order parameter and the cluster size distribution in the entire non-percolating phase. These results suggest that the assortative degree-degree correlation generates a global structural correlation which is relevant to the percolation critical phenomena of complex networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا