ترغب بنشر مسار تعليمي؟ اضغط هنا

NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and HCOOCH3. Despite a number of recent studies, little is known about their abundances in the solid state. ( ...) In this work, we investigate the ~ 8-10 micron region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 micron silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH3- and CH3OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ~9 micron in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH3 nu_2 umbrella mode, and derive abundances with respect to water between ~2 and 15%. Simultaneously, we also revisited the case of CH3OH ice by studying the nu_4 C-O stretch mode of this molecule at ~9.7 micron in 16 objects, yielding abundances consistent with those derived by Boogert et al. 2008 (hereafter paper I) based on a simultaneous 9.75 and 3.53 micron data analysis. Our study indicates that NH3 is present primarily in H2O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH3OH being in an almost pure methanol ice, or mixed mainly with CO or CO2, consistent with its formation through hydrogenation on grains. Finally, we use our derived NH3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10-20 % of nitrogen is locked up in known ices.
We report the first science observations and results obtained with the extended SMA (eSMA), which is composed of the SMA (Submillimeter Array), JCMT (James Clerk Maxwell Telescope) and CSO (Caltech Submillimeter Observatory). Redshifted absorptions a t z=0.886 of CI (^3P_1 - ^3P_0) were observed with the eSMA with an angular resolution of 0.55x0.22 at 1.1 mm toward the southwestern image of the remarkable lensed quasar PKS 1830-211, but not toward the northeastern component at a separation of ~1. Additionally, SMA observations of CO, 13CO and C18O (all J=4-3) were obtained toward this object: CO was also detected toward the SW component, but none of the isotopologues were. This is the first time [CI] is detected in this object, allowing the first direct determination of relative abundances of neutral atomic carbon to CO in the molecular clouds of a spiral galaxy at z>0.1. The [CI] and CO profiles can be decomposed into two and three velocity components respectively. We derive C/CO column density ratios ranging from <0.5 (representative of dense cores) to ~2.5 (close to translucent clouds values). This could indicate that we are seeing environments with different physical conditions or that we are witnessing chemical evolution of regions where C has not completely been converted into CO.
The eSMA (extended SMA) combines the SMA, JCMT and CSO into a single facility, providing enhanced sensitivity and spatial resolution owing to the increased collecting area at the longest baselines. Until ALMA early science observing (2011), the eSMA will be the facility capable of the highest angular resolution observations at 345 GHz. The gain in sensitivity and resolution will bring new insights in a variety of fields, such as protoplanetary/transition disks, high-mass star formation, solar system bodies, nearby and high-z galaxies. Therefore the eSMA is an important facility to prepare the grounds for ALMA and train scientists in the techniques. Over the last two years, and especially since November 2006, there has been substantial progress toward making the eSMA into a working interferometer. In particular, (i) new 345-GHz receivers, that match the capabilities of the SMA system, were installed at the JCMT and CSO; (ii) numerous tests have been performed for receiver, correlator and baseline calibrations in order to determine and take into account the effects arising from the differences between the three types of antennas; (iii) first fringes at 345 GHz were obtained on August 30 2007, and the array has entered the science-verification stage. We report on the characteristics of the eSMA and its measured performance at 230 GHz and that expected at 345 GHz. We also present the results of the commissioning and some initial science-verification observations, including the first absorption measurement of the C/CO ratio in a galaxy at z=0.89, located along the line of sight to the lensed quasar PKS1830-211, and on the imaging of the vibrationally excited HCN line towards IRC+10216.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا