ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of skyrmions has sparked tremendous interests about topologically nontrivial spin textures in recent times. The signature of noncoplanar nature of magnetic moments can be observed as topological Hall effect (THE) in electrical measureme nt. Realization of such nontrivial spin textures in new materials and through new routes is an ongoing endeavour due to their huge potential for future ultra-dense low-power memory applications. In this work, we report oxygen vacancy (OV) induced THE and anomalous Hall effect (AHE) in a 5$d^0$ system KTaO$_3$. The observation of weak antilocalization behavior and THE in the same temperature range strongly implies the crucial role of spin-orbit coupling (SOC) behind the origin of THE. Ab initio calculations reveal the formation of the magnetic moment on Ta atoms around the OV and Rashba-type spin texturing of conduction electrons. In the presence of Rashba SOC, the local moments around vacancy can form bound magnetic polarons (BMP) with noncollinear spin texture, resulting THE. Scaling analysis between transverse and longitudinal resistance establishes skew scattering driven AHE in present case. Our study opens a route to realize topological phenomena through defect engineering.
The observation of metallic interface between band insulators LaAlO$_3$ and SrTiO$_3$ has led to massive efforts to understand the origin of the phenomenon as well as to search for other systems hosting such two dimensional electron gases (2-DEG). Ho wever, the understanding of the origin of the 2-DEG is very often hindered as several possible mechanisms such as polar catastrophe, cationic intermixing and oxygen vacancy (OV) etc. can be operative simultaneously. The presence of a heavy element makes KTaO$_3$ (KTO) based 2-DEG a potential platform to investigate spin orbit coupling driven novel electronic and magnetic phenomena. In this work, we investigate the sole effect of the OV, which makes KTO metallic. Our detailed textit{ab initio} calculations not only find partially filled conduction bands in the presence of an OV but also predict a highly localized mid-gap state due to the linear clustering of OVs around Ta. Photoluminescence measurements indeed reveal the existence of such mid-gap state and O $K$-edge X-ray absorption spectroscopy finds electron doping in Ta $t_{2g}^*$ antibonding states. This present work suggests that one should be cautious about the possible presence of OVs within KTO substrate in interpreting metallic behavior of KTO based 2-DEG.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا