ترغب بنشر مسار تعليمي؟ اضغط هنا

57 - Samuel Jones 2014
Massive stars are key sources of radiative, kinetic, and chemical feedback in the universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inc onsistent results for the same stars. We use three of these 1D codes---GENEC, KEPLER and MESA---to compute non-rotating stellar models of $15~mathrm{M}_odot$, $20~mathrm{M}_odot$, and $25~mathrm{M}_odot$ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The GENEC and KEPLER models hold physics assumptions used in large grids of published models. The MESA code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by GENEC. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool MPPNP. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than $30,%$---smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g., helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models.
In the ONeMg cores of $8.8-9.5~{rm M}_odot$ stars, neon and oxygen burning is ignited off-center. Whether the neon-oxygen flame propagates to the center is critical to determine whether these stars undergo Fe core collapse or electron capture induced ONeMg core collapse. We present more details of stars that ignite neon and oxygen burning off-center. The neon flame is established in a similar manner to the carbon flame of super-AGB stars, albeit with a narrower flame width. The criteria for establishing a flame are able to be met if the strict Schwarzschild criterion for convective instability is adopted. Mixing across the interface of the convective shell disrupts the conditions for the propagation of the burning front and instead the shell burns as a series of inward-moving flashes. While this may not directly affect whether the burning will reach the center (as in super-AGB stars), the core is allowed to contract between each shell flash. Reduction of the electron fraction in the shell reduces the Chandrasekhar mass and the center reaches the threshold density for the URCA process to activate and steer the remaining evolution of the core. This highlights the importance of a more accurate treatment of mixing in the stellar interior for yet another important question in stellar astrophysics - determining the properties of stellar evolution and supernova progenitors at the boundary between electron capture supernova and iron core-collapse supernova.
112 - Samuel Jones 2013
The stellar mass range 8<M/Mo<12 corresponds to the most massive AGB stars and the most numerous massive stars. It is host to a variety of supernova progenitors and is therefore very important for galactic chemical evolution and stellar population st udies. In this paper, we study the transition from super-AGB star to massive star and find that a propagating neon-oxygen burning shell is common to both the most massive electron capture supernova (EC-SN) progenitors and the lowest mass iron-core collapse supernova (FeCCSN) progenitors. Of the models that ignite neon burning off-center, the 9.5Mo model would evolve to an FeCCSN after the neon-burning shell propagates to the center, as in previous studies. The neon-burning shell in the 8.8Mo model, however, fails to reach the center as the URCA process and an extended (0.6 Mo) region of low Ye (0.48) in the outer part of the core begin to dominate the late evolution; the model evolves to an EC-SN. This is the first study to follow the most massive EC-SN progenitors to collapse, representing an evolutionary path to EC-SN in addition to that from SAGB stars undergoing thermal pulses. We also present models of an 8.75Mo super-AGB star through its entire thermal pulse phase until electron captures on 20Ne begin at its center and of a 12Mo star up to the iron core collapse. We discuss key uncertainties and how the different pathways to collapse affect the pre-supernova structure. Finally, we compare our results to the observed neutron star mass distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا