ترغب بنشر مسار تعليمي؟ اضغط هنا

Internet of Things (IoT) has already proven to be the building block for next-generation Cyber-Physical Systems (CPSs). The considerable amount of data generated by the IoT devices needs latency-sensitive processing, which is not feasible by deployin g the respective applications in remote Cloud datacentres. Edge/Fog computing, a promising extension of Cloud at the IoT-proximate network, can meet such requirements for smart CPSs. However, the structural and operational differences of Edge/Fog infrastructure resist employing Cloud-based service regulations directly to these environments. As a result, many research works have been recently conducted, focusing on efficient application and resource management in Edge/Fog computing environments. Scalable Edge/Fog infrastructure is a must to validate these policies, which is also challenging to accommodate in the real-world due to high cost and implementation time. Considering simulation as a key to this constraint, various software has been developed that can imitate the physical behaviour of Edge/Fog computing environments. Nevertheless, the existing simulators often fail to support advanced service management features because of their monolithic architecture, lack of actual dataset, and limited scope for a periodic update. To overcome these issues, we have developed multiple simulation models for service migration, dynamic distributed cluster formation, and microservice orchestration for Edge/Fog computing in this work and integrated with the existing iFogSim simulation toolkit for launching it as iFogSim2. The performance of iFogSim2 and its built-in policies are evaluated using three use case scenarios and compared with the contemporary simulators and benchmark policies under different settings. Results indicate that the proposed solution outperform others in service management time, network usage, ram consumption, and simulation time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا