ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound states in the continuum (BICs) in photonic crystals represent the unique solutions of wave equations possessing an infinite quality-factor. We design a type of bilayer photonic crystal and study the influence of symmetry and coupling between TE and TM polarizations on BICs. The BIC modes possess $C_{3v}$ symmetry in the x-y plane while the mirror-flip symmetry in the z-direction is broken, and they provide selective coupling into different layers by varying frequency. The enhanced TE-TM coupling due to broken mirror-flip symmetry in the z-direction gives rise to high-Q factor BIC states with unique spatial characteristics. We show the emergence of such BIC states even in the presence of coupling between the TE- and TM-like modes, which is different from the existing single polarization BIC models. We propose to study BICs in multilayer systems, and the results may be helpful in designing photonic settings to observe and manipulate BICs with various symmetries and polarizations for practical applications.
Exceptional points (EPs) are degeneracies in open wave systems with coalescence of at least two energy levels and their corresponding eigenstates. In higher dimensions, more complex EP physics not found in two-state systems is observed. We consider t he emergence and interaction of multiple EPs in a four coupled optical waveguides system by non-Hermitian coupling showing a unique EP formation pattern in a phase diagram. In addition, absolute phase rigidities are computed to show the mixing of the different states in definite parameter regimes. Our results could be potentially important for developing further understanding of EP physics in higher dimensions via generalized paradigm of nonHermitian coupling for a new generation of parity-time (PT) devices.
The explorations of the quantum-inspired symmetries in optical and photonic systems have witnessed immense research interests both fundamentally and technologically in a wide range of subjects of physics and engineering. One of the principal emerging fields in this context is non-Hermitian physics based on parity-time symmetry, originally proposed in the studies pertaining to quantum mechanics and quantum field theory, recently ramified into diverse set of areas, particularly in optics and photonics. The intriguing physical effects enabled by non-Hermitian physics and PT symmetry have enhanced significant applications prospects and engineering of novel materials. In addition, it has observed increasing research interests in many emerging directions beyond optics and photonics. This Review paper attempts to bring together the state of the art developments in the field of complex non-Hermitian physics based on PT symmetry in various physical settings along with elucidating key concepts and background and a detailed perspective on new emerging directions. It can be anticipated that this trendy field of interest can be indispensable in providing new perspectives in maneuvering the flow of light in the diverse physical platforms in optics, photonics, condensed matter, opto-electronics and beyond, and offer distinctive applications prospects in novel functional materials.
Two-dimensional (2D) coupled resonant optical waveguide (CROW), exhibiting topological edge states, provides an efficient platform for designing integrated topological photonic devices. In this paper, we propose an experimentally feasible design of 2 D honeycomb CROW photonic structure. The characteristic optical system possesses two-fold and three-fold Dirac points at different positions in the Brillouin zone. The effective gauge fields implemented by the intrinsic pseudo-spin-orbit interaction open up topologically nontrivial bandgaps through the Dirac points. Spatial lattice geometries allow destructive wave interference, leading to a dispersionless, nearly-flat energy band in the vicinity of the three-fold Dirac point in the telecommunication frequency regime. This nontrivial nearly-flat band yields topologically protected edge states. The pertinent physical effects brought about due to non-Hermitian gain/loss medium into the honeycomb CROW device are discussed. The generalized gain-loss lattice with parity-time symmetry decouples the gain and the loss at opposite zigzag edges, leading to purely gain or loss edge channels. Meanwhile, the gain and loss effects on the armchair boundary cancel each other, giving rise to dissipationless edge states in non-Hermitian optical systems. These characteristics underpin the fundamental importance as well as the potential applications in various optical devices such as polarizers, optical couplers, beam splitters and slow light delay lines.
122 - Samit Kumar Gupta 2017
In this work, based on the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlocal nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first ord er Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse coordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.
In this work, we have studied the peregrine rogue wave dynamics, with a solitons on finite background (SFB) ansatz, in the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity. We have found that the continuous nonlinear Schrodinger system with PT-symmetric nonlinearity also admits Peregrine Soliton solution. Motivated by the fact that Peregrine solitons are regarded as prototypical solutions of rogue waves, we have studied Peregrine rogue wave dynamics in the c-PTNLSE model. Upon numerical computation, we observe the appearance of low-intense Kuznetsov-Ma (KM) soliton trains in the absence of transverse shift (unbroken PT-symmetry) and well-localized high-intense Peregrine Rogue waves in the presence of transverse shift (broken PT-symmetry) in a definite parametric regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا