ترغب بنشر مسار تعليمي؟ اضغط هنا

Primordial black holes (PBHs) are one of the most interesting non-particle dark matter (DM) candidates. They may explain all the DM content in the Universe in the mass regime about $10^{-14}M_{odot}-10^{-11}M_{odot}$. We study PBHs as the source of F ast Radio Bursts via magnetic reconnection in the event of collisions between them and neutron stars (NSs) in galaxies. We investigate the energy-loss of PBHs during PBH-NS encounters to model their capture by NSs. To an order-of-magnitude estimation, we conclude that the parameter space of PBHs being all DM is accidentally consistent with that to produce FRBs with a rate which is the order of the observed FRB rate.
Probing the QCD axion dark matter (DM) hypothesis is extremely challenging as the axion interacts very weakly with Standard Model particles. We propose a new avenue to test the QCD axion DM via transient radio signatures coming from encounters betwee n neutron stars (NSs) and axion minihalos around primordial black holes (PBHs). We consider a general QCD axion scenario in which the PQ symmetry breaking occurs before (or during) inflation coexisting with a small fraction of DM in the form of PBHs. The PBHs will unavoidably acquire around them axion minihalos with the typical length scale of parsecs. The axion density in the minihalos may be much higher than the local DM density, and the presence of these compact objects in the Milky Way today provides a novel chance for testing the axion DM hypothesis. We study the evolution of the minihalo mass distribution in the Galaxy accounting for tidal forces and estimate the encounter rate between NSs and the dressed PBHs. We find that the encounters give rise to transient line-like emission of radio frequency photons produced by the resonant axion-photon conversion in the NS magnetosphere and the characteristic signal could be detectable with the sensitivity of current and prospective radio telescopes.
We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion winos, with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the DM particles are captured by PBHs leading to the presence of PBHs with dark minihalos in the Milky Way today. The strongest constraints for the wino DM come from the production of narrow line gamma rays from wino annihilation in the Galactic Center. We analyse in detail the viability of the mixed wino DM scenario, and determine the constraints on the fraction of DM in PBHs assuming a cored halo profile in the Milky Way. We show that already with the sensitivity of current indirect searches, there is a significant probability for detecting a gamma ray signal characteristic for the wino annihilation in a single nearby dressed PBH when $M_{text{PBH}} sim M_{odot}$, which we refer to as a shining black hole. Similar results should apply also in more general setups with ultracompact minihalos or other DM models, since the accretion of DM around large overdensities and DM annihilation are both quite generic processes.
We discuss correlations among spectral observables as a new tool for differentiating between models for the primordial perturbation. We show that if generated in the isocurvature sector, a running of the scalar spectral index is correlated with the s tatistical properties of non-Gaussianities. In particular, we find a large running will inevitably be accompanied by a large running of $f_{rm NL}$ and enhanced $g_{rm NL}$, with $g_{rm NL}gg f_{rm NL}^2$. If the tensor to scalar ratio is large, a large negative running must turn positive on smaller scales. Interestingly, the characteristic scale of the transition could potentially distinguish between the inflaton and isocurvature fields.
314 - Sami Nurmi 2013
Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties o f our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا