ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a two-stage electricity market comprising a forward and a real-time settlement. The former pre-dispatches the power system following a least-cost merit order and facing an uncertain net demand, while the latter copes with the plausible de viations with respect to the forward schedule by making use of power regulation during the actual operation of the system. Standard industry practice deals with the uncertain net demand in the forward stage by replacing it with a good estimate of its conditional expectation (usually referred to as a point forecast), so as to minimize the need for power regulation in real time. However, it is well known that the cost structure of a power system is highly asymmetric and dependent on its operating point, with the result that minimizing the amount of power imbalances is not necessarily aligned with minimizing operating costs. In this paper, we propose a mixed-integer program to construct, from the available historical data, an alternative estimate of the net demand that accounts for the power systems cost asymmetry. Furthermore, to accommodate the strong dependence of this cost on the power systems operating point, we use clustering to tailor the proposed estimate to the foreseen net-demand regime. By way of an illustrative example and a more realistic case study based on the European power system, we show that our approach leads to substantial cost savings compared to the customary way of doing.
The increase in distributed energy resources and flexible electricity consumers has turned TSO-DSO coordination strategies into a challenging problem. Existing decomposition/decentralized methods apply divide-and-conquer strategies to trim down the c omputational burden of this complex problem, but rely on access to proprietary information or fail-safe real-time communication infrastructures. To overcome these drawbacks, we propose in this paper a TSO-DSO coordination strategy that only needs a series of observations of the nodal price and the power intake at the substations connecting the transmission and distribution networks. Using this information, we learn the price response of active distribution networks (DN) using a decreasing step-wise function that can also adapt to some contextual information. The learning task can be carried out in a computationally efficient manner and the curve it produces can be interpreted as a market bid, thus averting the need to revise the current operational procedures for the transmission network. Inaccuracies derived from the learning task may lead to suboptimal decisions. However, results from a realistic case study show that the proposed methodology yields operating decisions very close to those obtained by a fully centralized coordination of transmission and distribution.
The growing use of electric vehicles (EVs) may hinder their integration into the electricity system as well as their efficient operation due to the intrinsic stochasticity associated with their driving patterns. In this work, we assume a profit-maxim izer EV-aggregator who participates in the day-ahead electricity market. The aggregator accounts for the technical aspects of each individual EV and the uncertainty in its driving patterns. We propose a hierarchical optimization approach to represent the decision-making of this aggregator. The upper level models the profit-maximizer aggregators decisions on the EV-fleet operation, while a series of lower-level problems computes the worst-case EV availability profiles in terms of battery draining and energy exchange with the market. Then, this problem can be equivalently transformed into a mixed-integer linear single-level equivalent given the totally unimodular character of the constraint matrices of the lower-level problems and their convexity. Finally, we thoroughly analyze the benefits of the hierarchical model compared to the results from stochastic and deterministic models.
Inspired from recent insights into the common ground of machine learning, optimization and decision-making, this paper proposes an easy-to-implement, but effective procedure to enhance both the quality of renewable energy forecasts and the competitiv e edge of renewable energy producers in electricity markets with a dual-price settlement of imbalances. The quality and economic gains brought by the proposed procedure essentially stem from the utilization of valuable predictors (also known as features) in a data-driven newsvendor model that renders a computationally inexpensive linear program. We illustrate the proposed procedure and numerically assess its benefits on a realistic case study that considers the aggregate wind power production in the Danish DK1 bidding zone as the variable to be predicted and traded. Within this context, our procedure leverages, among others, spatial information in the form of wind power forecasts issued by transmission system operators (TSO) in surrounding bidding zones and publicly available in online platforms. We show that our method is able to improve the quality of the wind power forecast issued by the Danish TSO by several percentage points (when measured in terms of the mean absolute or the root mean square error) and to significantly reduce the balancing costs incurred by the wind power producer.
This paper provides insight on the economic inefficiency of the classical merit-order dispatch in electricity markets with uncertain supply. For this, we consider a power system whose operation is driven by a two-stage electricity market, with a forw ard and a real-time market. We analyze two different clearing mechanisms: a conventional one, whereby the forward and the balancing markets are independently cleared following a merit order, and a stochastic one, whereby both market stages are co-optimized with a view to minimizing the expected aggregate system operating cost. We first derive analytical formulae to determine the dispatch rule prompted by the co-optimized two-stage market for a stylized power system with flexible, inflexible and stochastic power generation and infinite transmission capacity. This exercise sheds light on the conditions for the stochastic market-clearing mechanism to break the merit order. We then introduce and characterize two enhanced variants of the conventional two-stage market that result in either price-consistent or cost-efficient merit-order dispatch solutions, respectively. The first of these variants corresponds to a conventional two-stage market that allows for virtual bidding, while the second requires that the stochastic power production be centrally dispatched. Finally, we discuss the practical implications of our analytical results and illustrate our conclusions through examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا