ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - Yingran He , Sailing He , Jie Gao 2012
We propose deep-subwavelength optical waveguides based on metal-dielectric multilayer indefinite metamaterials with ultrahigh effective refractive indices. Waveguide modes with different mode orders are systematically analyzed with numerical simulati ons based on both metal-dielectric multilayer structures and the effective medium approach. The dependences of waveguide mode indices, propagation lengths and mode areas on different mode orders, free space wavelengths and sizes of waveguide cross sections are studied. Furthermore, waveguide modes are also illustrated with iso-frequency contours in the wave vector space in order to investigate the mechanism of waveguide mode cutoff for high order modes. The deep-subwavelength optical waveguide with a size smaller than {lambda}0/50 and a mode area in the order of 10-4 {lambda}02 is realized, and an ultrahigh effective refractive index up to 62.0 is achieved at the telecommunication wavelength. This new type of metamaterial optical waveguide opens up opportunities for various applications in enhanced light-matter interactions.
A new formalism for electromagnetic and mechanical momenta in a metamaterial is developed by means of the technique of wave-packet integrals. The medium has huge mass density and can therefore be regarded as almost stationary upon incident electromag netic waves. A clear identification of momentum density and momentum flow, including their electromagnetic and mechanical parts, is obtained by employing this formalism in a lossless dispersive metamaterial (including the cases of impedance matching and mismatching with vacuum). It is found that the ratio of the electromagnetic momentum density to the mechanical momentum density depends on the impedance and group velocity of the electromagnetic wave inside the metamaterial. One of the definite results is that both the electromagnetic momentum and the mechanical momentum in the metamaterial are in the same direction as the energy flow, instead of in the direction of the wave vector. The conservation of total momentum is verified. In addition, the law of energy conservation in the process of normal incidence is also verified by using the wave-packet integral of both the electromagnetic energy density and the electromagnetic power density, of which the latter is caused by the interaction between the induced (polarized) currents and the electromagnetic wave.
82 - Yuqian Ye , Sailing He 2010
A bilayered chiral metamaterial (CMM) is proposed to realize a 90 degree polarization rotator, whose giant optical activity is due to the transverse magnetic dipole coupling among the metallic wire pairs of enantiomeric patterns. By transmission thro ugh this thin bilayered structure of less than lambda/30 thick, a linearly polarized wave is converted to its cross polarization with a resonant polarization conversion efficiency (PCE) of over 90%. Meanwhile, the axial ratio of the transmitted wave is better than 40 dB. It is demonstrated that the chirality in the propagation direction makes this efficient cross-polarization conversion possible. The transversely isotropic property of this polarization rotator is also experimentally verified. The optical activity of the present structure is about 2700 degree/lambda, which is the largest optical activity that can be found in literature.
121 - Yuqian Ye , Yi Jin , Sailing He 2009
A nearly omni-directional THz absorber for both transverse electric (TE) and transverse magnetic (TM) polarizations is proposed. Through the excitation of magnetic polariton in a metal-dielectric layer, the incident light is perfectly absorbed in a t hin thickness which is about 25 times smaller than the resonance wavelength. By simply stacking several such structural layers with different geometrical dimensions, the bandwidth of this strong absorption can be effectively enhanced due to the hybridization of magnetic polaritons in different layers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا