ترغب بنشر مسار تعليمي؟ اضغط هنا

148 - Masahiro Takeoka , Saikat Guha , 2015
Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are y et-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. We show that the secret-key-agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret-key-agreement capacity of optical channels---a long-standing open problem in optical quantum information theory---and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
Laser-light (coherent-state) modulation is sufficient to achieve the ultimate (Holevo) capacity of classical communication over a lossy and noisy optical channel, but requires a receiver that jointly detects long modulated codewords with highly nonli near quantum operations, which are near-impossible to realize using current technology. We analyze the capacity of the lossy-noisy optical channel when the transmitter uses coherent state modulation but the receiver is restricted to a general quantum-limited Gaussian receiver, i.e., one that may involve arbitrary combinations of Gaussian operations (passive linear optics: beamsplitters and phase-shifters, second order nonlinear optics (or active linear optics): squeezers, along with homodyne or heterodyne detection measurements) and any amount of classical feedforward within the receiver. Under these assumptions, we show that the Gaussian receiver that attains the maximum mutual information is either homodyne detection, heterodyne detection, or time sharing between the two, depending upon the received power level. In other words, our result shows that to exceed the theoretical limit of conventional coherent optical communications, one has to incorporate non-Gaussian, i.e., third or higher-order nonlinear operations in the receiver. Finally we compare our Gaussian receiver limit with experimentally feasible non-Gaussian receivers and show that in the regime of low received photon flux, it is possible to overcome the Gaussian receiver limit by relatively simple non-Gaussian receivers based on photon counting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا