ترغب بنشر مسار تعليمي؟ اضغط هنا

The textual content of a document and its publication date are intertwined. For example, the publication of a news article on a topic is influenced by previous publications on similar issues, according to underlying temporal dynamics. However, it can be challenging to retrieve meaningful information when textual information conveys little information or when temporal dynamics are hard to unveil. Furthermore, the textual content of a document is not always linked to its temporal dynamics. We develop a flexible method to create clusters of textual documents according to both their content and publication time, the Powered Dirichlet-Hawkes process (PDHP). We show PDHP yields significantly better results than state-of-the-art models when temporal information or textual content is weakly informative. The PDHP also alleviates the hypothesis that textual content and temporal dynamics are always perfectly correlated. PDHP allows retrieving textual clusters, temporal clusters, or a mixture of both with high accuracy when they are not. We demonstrate that PDHP generalizes previous work --such as the Dirichlet-Hawkes process (DHP) and Uniform process (UP). Finally, we illustrate the changes induced by PDHP over DHP and UP in a real-world application using Reddit data.
124 - Pengfei Liu 2021
With new emerging technologies, such as satellites and drones, archaeologists collect data over large areas. However, it becomes difficult to process such data in time. Archaeological data also have many different formats (images, texts, sensor data) and can be structured, semi-structured and unstructured. Such variety makes data difficult to collect, store, manage, search and analyze effectively. A few approaches have been proposed, but none of them covers the full data lifecycle nor provides an efficient data management system. Hence, we propose the use of a data lake to provide centralized data stores to host heterogeneous data, as well as tools for data quality checking, cleaning, transformation, and analysis. In this paper, we propose a generic, flexible and complete data lake architecture. Our metadata management system exploits goldMEDAL, which is the most complete metadata model currently available. Finally, we detail the concrete implementation of this architecture dedicated to an archaeological project.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا