ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a first principles approach to determine the strength of the electronic correlations based on the fully self consistent GW approximation. The approach provides a seamless interface with dynamical mean field theory, and gives good results for well studied correlated materials such as NiO. Applied to the recently discovered iron arsenide materials, it accounts for the noticeable correlation features observed in optics and photoemission while explaining the absence of visible satellites in X-ray absorption experiments and other high energy spectroscopies.
226 - M.J. Han , X. Wan , S.Y. Savrasov 2008
To clarify the role of the Kondo effect in screening local magnetic moments of Plutonium 5f--electrons as well as its competition to the RKKY interactions we use a combination of density functional theory with static Hartree Fock and dynamic Hubbard 1 approximations to calculate the strength of both the Kondo exchange, J_K, and of the RKKY exchange, J_RKKY, couplings for Pu{1-x}Am{x} system as a function of x. We find that J_K increases despite the atomic volume gets larger with the Am doping due to unexpected enhancement of hybridization between f and conduction electrons in the vicinity of the Fermi level. At the same time, the RKKY exchange is shown to reduce smoothly with increasing x. Our results imply that the Kondo effect should be robust against the increase in interatomic spacing of this alloy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا