ترغب بنشر مسار تعليمي؟ اضغط هنا

261 - S.Y. BenZvi , B.M. Connolly , 2008
Searches for statistically significant correlations between arrival directions of ultra-high energy cosmic rays and classes of astrophysical objects are common in astroparticle physics. We present a method to test potential correlation signals of a p riori unknown strength and evaluate their statistical significance sequentially, i.e., after each incoming new event in a running experiment. The method can be applied to data taken after the test has concluded, allowing for further monitoring of the signal significance. It adheres to the likelihood principle and rigorously accounts for our ignorance of the signal strength.
Air fluorescence detectors measure the energy of ultra-high energy cosmic rays by collecting fluorescence light emitted from nitrogen molecules along the extensive air shower cascade. To ensure a reliable energy determination, the light signal needs to be corrected for atmospheric effects, which not only attenuate the signal, but also produce a non-negligible background component due to scattered Cherenkov light and multiple-scattered light. The correction requires regular measurements of the aerosol attenuation length and the aerosol phase function, defined as the probability of light scattered in a given direction. At the Pierre Auger Observatory in Malargue, Argentina, the phase function is measured on an hourly basis using two Aerosol Phase Function (APF) light sources. These sources direct a UV light beam across the field of view of the fluorescence detectors; the phase function can be extracted from the image of the shots in the fluorescence detector cameras. This paper describes the design, current status, standard operation procedure, and performance of the APF system at the Pierre Auger Observatory.
The air fluorescence detectors (FDs) of the Pierre Auger Observatory are vital for the determination of the air shower energy scale. To compensate for variations in atmospheric conditions that affect the energy measurement, the Observatory operates a n array of monitoring instruments to record hourly atmospheric conditions across the detector site, an area exceeding 3,000 square km. This paper presents results from four instruments used to characterize the aerosol component of the atmosphere: the Central Laser Facility (CLF), which provides the FDs with calibrated laser shots; the scanning backscatter lidars, which operate at three FD sites; the Aerosol Phase Function monitors (APFs), which measure the aerosol scattering cross section at two FD locations; and the Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence of aerosol attenuation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا