ترغب بنشر مسار تعليمي؟ اضغط هنا

The possibility to store optical information is important for classical and quantum communication. Atoms or ions as well as color centers in crystals offer suitable two-level systems for absorbing incoming photons. To obtain a reliable transfer of co herence, strong enough light-matter interaction is required, which may enforce use of ensembles of absorbers, but has the disadvantage of unavoidable inhomogeneities leading to fast dephasing. This obstacle can be overcome by echo techniques that allow recovery of the information as long as the coherence is preserved. Albeit semiconductor quantum structures appear appealing for information storage due to the large oscillator strength of optical transitions, inhomogeneity typically is even more pronounced for them and most importantly the optical coherence is limited to nanoseconds or shorter. Here we show that by transferring the information to electron spins the storage times for the optical coherence can be extended by orders of magnitude up to the spin relaxation time. From the spin reservoir it can be retrieved on purpose by inducing a stimulated photon echo. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well for which the storage time thereby could be increased by more than three orders of magnitude from the picosecond-range up to tens of nanoseconds.
We report on the first experimental observation of spin noise in a single semiconductor quantum well embedded into a microcavity. The great cavity-enhanced sensitivity to fluctuations of optical anisotropy has allowed us to measure the Kerr rotation and ellipticity noise spectra in the strong coupling regime. The spin noise spectra clearly show two resonant features: a conventional magneto-resonant component shifting towards higher frequencies with magnetic field and an unusual nonmagnetic component centered at zero frequency and getting suppressed with increasing magnetic field. We attribute the first of them to the Larmor precession of free electron spins, while the second one being presumably due to hyperfine electron-nuclei spin interactions.
Optical control of exciton fluxes is realized for indirect excitons in a crossed-ramp excitonic device. The device demonstrates experimental proof of principle for all-optical excitonic transistors with a high ratio between the excitonic signal at th e optical drain and the excitonic signal due to the optical gate. The device also demonstrates experimental proof of principle for all-optical excitonic routers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا