ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on incoherent excitonic reserv oir engineering. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time (PT) symmetry of the coupled exciton-photon system realised in a specific regime of pumping to the exciton state and depletion of the reservoir. For effective non-zero exciton-photon detuning, permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realisation of integrated circuits based on exciton-polariton condensates.
We propose a novel physical mechanism for creation of long lived macroscopic exciton-photon qubits in semiconductor microcavities with embedded quantum wells in the strong couping regime. We argue that the coherence time of Rabi oscillations can be d ramatically enhanced due to their stimulated pumping from a permanent thermal reservoir of polaritons. The polariton qubit is a superposition of lower branch (LP) and upper branch (UP) exciton-polariton states. We discuss applications of such qubits for quantum information processing, cloning and storage purposes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا