ترغب بنشر مسار تعليمي؟ اضغط هنا

The aim of the paper is to determine abundances in a group of PNe with uniform morphology. The PNe discussed are circular excited by rather low-temperature central stars. The relation between abundance and evolution is discussed. The mid-infrared spe ctra of NGC1535, NGC6629, He2-108 and Tc1 taken with the Spitzer Space Telescope are presented. These spectra are combined with IUE and visual spectra to obtain complete extinction-corrected spectra from which the abundances are determined. These abundances are more accurate for several reasons, the most important is that the inclusion of the far infrared spectra increases the number of observed ions and makes it possible to include the nebular temperature gradient in the abundance calculation. The abundances of these PNe are compared to those found in five other PNe of similar properties and are further compared with predictions of evolutionary models. From this comparison we conclude that these PNe originated from low mass stars, probably between 1 and 2.5 solar masses and at present have core masses between 0.56 and 0.63 solar masses. A consistent description of the evolution of this class of PNe is found that agrees with the predictions of the present nebular abundances, the individual masses and the luminosities of these PNe. The distances to these nebulae can be found as well.
Context: In recent years mid- and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aim s: The observed abundances in planetary nebulae are compared to those predicted by the models of Karakas (2003) in order to predict the progenitor masses of the various PNe used. The morphology of the PNe is included in the comparison. Since the central stars play an important role in the evolution, it is expected that this comparison will yield additional information about them. Methods: First the nitrogen/oxygen ratio is discussed with relation to the helium/hydrogen ratio. The progenitor mass for each PNe can be found by a comparison with the models of Karakas. Then the present luminosity of the central stars is determined in two ways: first by computing the central star effective temperature and radius, and second by computing the nebular luminosity from the hydrogen and helium lines. This luminosity is also a function of the initial mass so that these two values of initial mass can be compared. Results: Six of the seven bipolar nebulae can be identified as descendants of high mass stars (4Msun - 6Msun) while the seventh is ambiguous. Most of the elliptical PNe have central stars which descend from low initial mass stars, although there are a few caveats which are discussed. There is no observational evidence for a higher mass for central stars which have a high carbon/oxygen ratio. The evidence provided by the abundance comparison with the models of Karakas is consistent with the HR diagram to which it is compared. In the course of this discussion it is shown how `optically thin nebulae can be separated from those which are optically thick.
The spectra of the planetary nebulae NGC3242 and NGC6369 are reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope and the Infrared Space Observatory (ISO). The aim is to determine the chemical composition o f these objects. We also make use of International Ultraviolet Explorer (IUE) and ground based spectra. These elliptical PNe are interesting because they are well-studied, nearby, bright objects and therefore allow a reasonably complete comparison of this type of nebulae. Abundances determined from the mid-infrared lines, which are insensitive to electron temperature, are used as the basis for the determination of the composition, which are found to differ somewhat from earlier results. The abundances found, especially the low value of helium and oxygen, indicate that the central star was originally of rather low mass. The abundance of phosphorus has been determined for the first time in NGC3242. The electron temperature in both of these nebulae is roughly constant unlike NGC6302 and NGC2392 where a strong temperature gradient is found. The temperature of the central star is discussed for both nebulae. Finally a comparison of the element abundances in these nebulae with the solar abundance is made. The low abundance of Fe and P is noted and it is suggested that these elements are an important constituent of the nebular dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا