ترغب بنشر مسار تعليمي؟ اضغط هنا

We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a high density CS medium. The light curve is similar in shape to that of SN 1998S and SN 1979C, although significantly fainter at maximum light. Our quasi-bolometric lightcurve extends to 300 days and shows a tail phase decay rate consistent with that of ^{56}Co. We propose that this is evidence for an explosion and formation of ^{56}Ni (0.0015 +/- 0.0004 M_Sun). The large MIR flux detected shortly after explosion can be explained by a light echo from pre-exisiting dust. The late NIR flux excess is plausibly due to a combination of warm newly-formed ejecta dust together with shock-heated dust in the CS environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90AU and outer radius of 450AU, and an inferred heating source of 3000 K and luminosity of L ~ 10^{4.6} L_Sun. The combination of our monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron capture supernova explosion in a super-AGB progenitor star (of initial mass 6-8 M_sun) embedded within a thick CS gaseous envelope. We suggest that all of main properties of the electron capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.
54 - S.J. Smartt 2009
We present the results of a 10.5 yr, volume limited (28 Mpc) search for supernova (SN) progenitor stars. We compile all SNe discovered within this volume (132, of which 27% are type Ia) and determine the relative rates of each sub-type from literatur e studies : II-P (59%), Ib/c (29%), IIb (5%), IIn (4%) and II-L (3%). Twenty II-P SNe have high quality optical or near-IR pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies (distance, metallicity and extinction) and determine masses and upper mass estimates using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a type II-P to form is m(min)=8.5 +1/-1.5 Msol and the maximum mass for II-P progenitors is m(max)=16.5 +/- 1.5 Msol, assuming a Salpeter initial mass function (in the range Gamma = -1.35 +0.3/-0.7). The minimum mass is consistent with current estimates for white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations. Red supergiants in the Local Group have masses up to 25Msol and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 Msol. We term this discrepancy the red supergiant problem and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. Low luminosity SNe with low 56Ni production seem to arise from explosions of low mass progenitors near the mass threshold for core-collapse. (abridged).
We report the identification of a source coincident with the position of the nearby type II-P supernova (SN) 2008bk in high quality optical and near-infrared pre-explosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared pre-explosion images is identified to within about +-70 and +-40 mas, respectively, using post-explosion Ks-band images obtained with the NAOS CONICA adaptive optics system on the VLT. The pre-explosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colours and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +- 1.0 Msun.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا