ترغب بنشر مسار تعليمي؟ اضغط هنا

56 - S.I. Blinnikov 2014
We consider consequences of hypothetical existence of baryo-dense stars created in the very early universe within an extension of Affleck-Dine scenario of baryogenesis. New constraints on the possible number of compact antimatter objects are derived. The contemporary observational data do not exclude significant amount of antimatter in the Galaxy (and in other galaxies) in the form of the baryo-dense low-massive stars.
Extending the population synthesis method to isolated young cooling white dwarfs we are able to confront our model assumptions with observations made in ROSAT All-Sky Survey (Fleming et al., 1996). This allows us to check model parameters such as evo lution of spectra and separation of heavy elements in DA WD envelopes. It seems like X-ray spectrum temperature of these objects is given by the formula T_{X-ray} = min(T_eff, T_max). We have obtained DA WDs birth rate and upper limit of the X-ray spectrum temperature: DA birth rate $= 0.61times 10^{-12}$ in cubic parsec per year and T_max = 41000 K. These values are in good correspondence with values obtained by other authors (Liebert et al., 2004; Wolff et al., 1996). From this fact we also conclude that our population synthesis method is applicable to the population of close-by isolated cooling white dwarfs as well as to the population of the isolated cooling neutron stars.
334 - S.I. Blinnikov 2009
The equation of state and composition of matter are calculated for conditions typical for pre-collapse and early collapse stages in core collapse supernovae. The composition is evaluated under the assumption of nuclear statistical equilibrium, when t he matter is considered as an `almost ideal gas with corrections due to thermal excitations of nuclei, to free nucleon degeneracy, and to Coulomb and surface energy corrections. The account of these corrections allows us to obtain the composition for densities a bit below the nuclear matter density. Through comparisons with the equation of state (EOS) developed by Shen et al. we examine the approximation of one representative nucleus used in most of recent supernova EOSs. We find that widely distributed compositions in the nuclear chart are different, depending on the mass formula, while the thermodynamical quantities are quite close to those in the Shens EOS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا