ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of optical (R band) photometric and polarimetric monitoring and Very Long Baseline Array (VLBA) imaging of the blazar S5 0716+714 along with Fermi gamma-ray data during a multi-waveband outburst in 2011 October. We analyze tota l and polarized intensity images of the blazar obtained with the VLBA at 43 GHz during and after the outburst. Monotonic rotation of the linear polarization vector at a rate of >50 degrees per night coincided with a sharp maximum in gamma-ray and optical flux. At the same time, within the uncertainties, a new superluminal knot appeared, with an apparent speed of ~21c. The general multi-frequency behavior of the outburst can be explained within the framework of a shock wave propagating along a helical path in the blazars jet.
We present radio-to-optical data taken by the WEBT, supplemented by VLBA and RXTE observations, of 3C 279. Our goal is to use this extensive database to draw inferences regarding the physics of the relativistic jet. We assemble multifrequency light c urves with data from 30 ground-based observatories and the space-based instruments, along with linear polarization vs. time in the optical R band. In addition, we present a sequence of 22 images (with polarization vectors) at 43 GHz at resolution 0.15 milliarcsec, obtained with the VLBA. We analyse the light curves and polarization, as well as the spectral energy distributions at different epochs, corresponding to different brightness states. The IR-optical-UV continuum spectrum of the variable component corresponds to a power law with a constant slope of -1.6, while in the 2.4-10 keV X-ray band it varies in slope from -1.1 to -1.6. The steepest X-ray spectrum occurs at a flux minimum. During a decline in flux from maximum in late 2006, the optical and 43 GHz core polarization vectors rotate by ~300 degrees. The continuum spectrum agrees with steady injection of relativistic electrons with a power-law energy distribution of slope -3.2 that is steepened to -4.2 at high energies by radiative losses. The X-ray emission at flux minimum comes most likely from a new component that starts in an upstream section of the jet where inverse Compton scattering of seed photons from outside the jet is important. The rotation of the polarization vector implies that the jet contains a helical magnetic field that extends ~20 pc past the 43 GHz core.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا