ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - S.Actis , A.Arbuzov , G.Balossini 2009
We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e+e- colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays . We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed.
64 - S.Actis , G.Passarino , C.Sturm 2008
A large set of techniques needed to compute decay rates at the two-loop level are derived and systematized. The main emphasis of the paper is on the two Standard Model decays H -> gamma gamma and H -> g g. The techniques, however, have a much wider r ange of application: they give practical examples of general rules for two-loop renormalization; they introduce simple recipes for handling internal unstable particles in two-loop processes; they illustrate simple procedures for the extraction of collinear logarithms from the amplitude. The latter is particularly relevant to show cancellations, e.g. cancellation of collinear divergencies. Furthermore, the paper deals with the proper treatment of non-enhanced two-loop QCD and electroweak contributions to different physical (pseudo-)observables, showing how they can be transformed in a way that allows for a stable numerical integration. Numerical results for the two-loop percentage corrections to H -> gamma gamma, g g are presented and discussed. When applied to the process pp -> gg + X -> H + X, the results show that the electroweak scaling factor for the cross section is between -4 % and + 6 % in the range 100 GeV < Mh < 500 GeV, without incongruent large effects around the physical electroweak thresholds, thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا