ترغب بنشر مسار تعليمي؟ اضغط هنا

153 - S.A. Moiseev , W. Tittel 2010
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with dif ferently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide new insight into reversible light-atom interaction, and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role to increase the qubit rate, or to map quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
134 - S.A. Moiseev , , W. Tittel 2009
We examine a quantum memory scheme based on controllable dephasing of atomic coherence of a non-resonant, inhomogeneously broadened Raman transition. We show that it generalizes the physical conditions for time-reversible interaction between light an d atomic ensembles from weak to strong fields and from linear to non-linear interactions. We also develop a unified framework for different realizations exploiting either controlled reversible inhomogeneous broadening or atomic frequency combs, and discuss new aspects related to storage and manipulation of quantum states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا