ترغب بنشر مسار تعليمي؟ اضغط هنا

209 - T. Hatano , W. Kume , S. Watanabe 2014
Nuclear-spin diffusion in double quantum wells (QWs) is examined by using dynamic nuclear polarization (DNP) at a Landau level filling factor $ u=2/3$ spin phase transition (SPT). The longitudinal resistance increases during the DNP of one of the two QW (the polarization QW) by means of a large applied current and starts to decrease just after the termination of the DNP. On the other hand, the longitudinal resistance of the other QW (the detection QW) continuously increases for approximately 2h after the termination of the DNP of the polarization QW. It is therefore concluded that the nuclear spins diffuse from the polarization QW to the detection QW. The time evolution of the longitudinal resistance of the polarization QW is explained mainly by the nuclear-spin diffusion in the in-plane direction. In contrast, that of the detection QW manifests much slower nuclear diffusion in the perpendicular direction through the AlGaAs barrier.
Nuclear electric resonance (NER) is based on nuclear magnetic resonance mediated by spatial oscillations of electron spin domains excited by a radio frequency (RF) electric field, and it allows us to investigate the spatial distribution of the nuclea r spin polarization around domain walls (DWs). Here, NER measurements were made of the dynamic nuclear spin polarization (DNP) at the spin phase transition of the fractional quantum Hall state at a Landau level filling factor of $ u=2/3$. From the RF pulse power and pulse duration dependence of the NER spectrum, we show that the DNP occurs only within $sim 100$ nm around DWs, and that it does not occur in DWs. We also show that DWs are pinned by the hyperfine field from polarized nuclear spins.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا