ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the Higgs sector of the minimal supersymmetric standard model extended with vector-like quarks, at the one-loop level. The radiative corrections to the tree-level masses of the scalar Higgs bosons are calculated by including the contribution s from the loops of top quark, vector-like quarks, and their scalar superpartners, for a reasonable parameter region. We find that the mass of the lightest scalar Higgs boson at the one-loop level should be larger than 85 GeV, if we take into account the negative experimental result for the Higgs search at LEP2. As the radiative corrections are calculated in some detail, we also find that the mass of the lightest scalar Higgs boson at the one-loop level is bounded from above at 280 GeV, This upper bound is increased from a previous result. It may provide a wider possibility for the future collider experiments to discover the lightest scalar Higgs boson of this model.
In an extension of the Standard Model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied, by examining the finite-temperature effective Higgs potential at the one-loop level. It is found tha t there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.
In the minimal supersymmetric standard model (MSSM), a strongly first-order electroweak phase transition (EWPT) is only possible in a confined parameter region where one of the scalar top quarks is lighter than the top quark and the other one is as h eavy as the SUSY breaking scale. If the MSSM is enlarged to accommodate vector-like quarks and their superpartners, we find that the strongly first-order EWPT is possible without requiring light scalar top quark at the one-loop level, in the limit where the lightest scalar Higgs boson of the MSSM behaves like the Higgs boson of the standard model and the other Higgs bosons are all as heavy as the SUSY breaking scale. The strength of the first-order EWPT is found to be dependent on the mass of the lightest neutral Higgs boson and the mixing effects of the vector-like scalar quarks.
We study the Higgs self couplings of a supersymmetric $E_6$ model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson, in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in $e^+e^-$ collisions at the International Linear Collider (ILC) via double Higgs-strahlung process. For the center of mass energy of 500 GeV with the integrated luminosity of 500 fb$^{-1}$ and the efficiency of 20 %, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via double Higgs-strahlung process.
175 - S. W. Ham , Seong-a Shim , 2009
The possibility of explicit CP violation is studied in a supersymmetric model proposed by Dine, Seiberg, and Thomas, with two effective dimension-five operators. The explicit CP violation may be triggered by complex phases in the coefficients for the dimension-five operators in the Higgs potential, and by a complex phase in the scalar top quark masses. Although the scenario of explicit CP violation is found to be inconsistent with the experimental data at LEP2 at the tree level, it may be possible at the one-loop level. For a reasonable parameter space, the masses of the neutral Higgs bosons and their couplings to a pair of $Z$ bosons are consistent with the LEP2 data, at the one-loop level.
83 - S. W. Ham , Seong-a Shim , 2009
The Dine-Seiberg-Thomas model (DSTM) is the simplest version of the new physics beyond the minimal supersymmetric standard model (MSSM), in the sense that its Higgs sector has just two dimension-five operators, which are obtained from the power serie s of the energy scale for the new physics in the effective action analysis. We study the possibility of spontaneous CP violation in the Higgs sector of the DSTM, which consists of two Higgs doublets. We find that the CP violation may be triggered spontaneously by a complex phase, obtained as the relative phase between the vacuum expectation values of the two Higgs doublets. At the tree level, for a reasonably established parameter region, the masses of the three neutral Higgs bosons and their corresponding coupling coefficients to a pair of $Z$ bosons in the DSTM are calculated such that the results are inconsistent with the experimental constraint by the LEP data. Thus, the LEP2 data exclude the possibility of spontaneous CP violation in the DSTM at the tree level. On the other hand, we find that, for a wide area in the parameter region, the CP symmetry may be broken spontaneously in the Higgs sector of the DSTM at the one-loop level, where top quark and scalar top quark loops are taken into account. The upper bound on the radiatively corrected mass of the lightest neutral Higgs boson of the DSTM is about 87 GeV, in the spontaneous CP violation scenario. We confirm that the LEP data does not exclude this numerical result.
143 - S. W. Ham , S. K. OH 2009
The Higgs sector of the U(1)-extended supersymmetric model is studied with great detail. We calculate the masses of the Higgs bosons at the one-loop level. We also calculate at the one-loop level the gluon-involving processes for the productions and decays of the scalar Higgs bosons of the model at the energy of the CERN Large Hadron Collider (LHC), where the radiative corrections due to the loops of top, bottom, and exotic quarks and their scalar partners are taken into account. We find that the exotic quark and exotic scalar quarks in the model may manifest themselves at the LHC, since the production of the heaviest scalar Higgs boson via gluon fusion processes is mediated virtually by the loops of exotic quark and exotic scalar quarks, for a reasonable parameter set of the model.
199 - S. W. Ham 2008
We find that, at the one-loop level, the spontaneous CP violation is possible in a supersymmetric standard model that has an extra chiral Higgs triplet with hypercharge Y=0. At the tree level, this triplet-extended supersymmetric standard model (TESS M) cannot have any reasonable parameter spaces for the spontaneous CP violation, because the experimental constraints on the coupling coefficient of the neutral Higgs boson to a pair of $Z$ bosons exclude them. By contrast, at the one-loop level, we find that there are experimentally allowed parameter regions, where the spontaneous CP violation may take place. The mass of the lightest neutral Higgs boson in the TESSM in this case may be as large as about 100 GeV, by considering the one-loop contribution due to the top quark and squark loops.
433 - S. W. Ham 2008
It is found that CP symmetry may be explicitly broken in the Higgs sector of a supersymmetric $E_6$ model with two extra neutral gauge bosons at the one-loop level. The phenomenology of the model, the Higgs sector in particular, is studied for a reas onable parameter space of the model, in the presence of explicit CP violation at the one-loop level. At least one of the neutral Higgs bosons of the model might be produced via the $WW$ fusion process at the Large Hadron Collider.
102 - S. W. Ham , J. O. Im , S. K. OH 2008
Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark an d squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases, which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of the explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا