ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - A. Yogo , S. V. Bulanov , M. Mori 2015
Dependence of the energy of ions accelerated during interaction of the laser pulse obliquelly incident on the thin foil target on the laser polarization is studied experimentally and theoretically. We found that the ion energy being maximal for the p -polarization gradually decreases when the pulse becomes s-polarized. The experimentally found dependences of the ion energy are explained by invoking the anomalous electron heating which results in high electrostatic potential formation at the target surface. Anomalous heating of electrons beyond the energy of quiver motion in the laser field is described within the framework of theoretical model of driven oscillator with a step-like nonlinearity. We have demonstrated that the electron anomalous heating can be realized in two regimes: nonlinear resonance and stochastic heating, depending on the extent of stochasticity. We have found the accelerated ion energy scaling determined by the laser intensity, pulse duration, polarization angle and incident angle.
A nonlinear oscillator with an abruptly inhomogeneous restoring force driven by an uniform oscillating force exhibits stochastic properties under specific resonance conditions. This behaviour elucidates the elementary mechanism of the electron energi zation in the strong electromagnetic wave interaction with thin targets.
We propose the experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electron s for studying extreme field limits in the nonlinear interaction of electromagnetic waves. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed in the laser plasma experiments. This will result in a new powerful source of ultra short high brightness gamma-ray pulses. A possibility of the demonstration of the electron-positron pair creation in vacuum in a multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا