ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated the effect of atomic substitutions in the FeSe system, which exhibits the simplest crystal structure among the iron-based superconductors. An enhancement of the superconducting transition temperature Tc was observed with the subs titution of S or Te for Se; the Tc increased with S substitution by up to 20 %, and also increased with Te substitution up to 75 %. In contrast, Co or Ni substitutions for the Fe site significantly suppressed superconductivity. In this work we present a detailed description of the substitution technique employed to determine Tc in the FeSe system.
77 - T. Baba , T. Yokoya , S. Tsuda 2008
We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy to directly observe the large superconducting (SC) gap anisotropy (GA) of YNi2B2C. The result shows large SC GA with a smooth variation along an intersection of a Fermi surface (FS) around the $Gamma$-Z line and nearly isotropic SC gap values for two intersections of FSs around the X-P line but with a point-like non-zero minimum only for one sheet. The point-like SC gap minimum can be connected by the nesting vector reported from band calculations. The results show unexpectedly complicated SC GA of borocarbide superconductors.
We have successfully synthesized a new superconducting phase of FeTe1-xSx with a PbO-type structure. It has the simplest crystal structure in iron-based superconductors. Superconducting transition temperature is about 10 K at x = 0.2. The upper criti cal field Hc2 was estimated to be ~70 T. The coherent length was calculated to be ~2.2 nm. Because FeTe1-xSx is composed of nontoxic elements, this material is a candidate for applications and will activate more and more research on iron-based superconductor.
Tetragonal FeSe is a superconductor with a transition temperature Tc of 8 K and shows a huge enhancement of Tc with applying pressure. Tetragonal FeTe has a structure very analogous to superconducting FeSe, but does not show superconducting transitio n. We investigated the pressure effect of resistivity on FeTe. The resistivity at room temperature decreased with increasing pressure. An anomaly in resistivity around 80 K shifted towards a lower temperature with increasing pressure.
159 - T. Baba , T. Yokoya , S. Tsuda 2008
We have performed temperature (T) - dependent laser-photoemission spectroscopy of antiferromagnetic (AF) superconductor ErNi2B2C to study the electronic-structure evolution reflecting the interplay between antiferromagnetism and superconductivity. Th e spectra at the superconducting (SC) phase show a very broad spectral shape. T-dependent SC gap shows a sudden deviation from the BCS prediction just below TN. This observation can be well explained by the theoretical model and thus represents characteristic bulk electronic structure of the AF SC phase for the first time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا