ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the dramatic mid-infrared brightening between 2004 and 2006 of HOPS 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 microns with a brightness increase also apparent at 4.5 microns. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K_s imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L_sun. Post-outburst time-series mid- and far-infrared photometry shows no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a six-year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.
We report the detection of a unique CO2 ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph onboard the Spitzer Space Telescope, reveals a 15.2 micron CO2 ice bending mode profile tha t cannot modeled with the same ice structure typically found toward other protostars. We develop a modified CO2 ice profile decomposition, including the addition of new high-quality laboratory spectra of pure, crystalline CO2 ice. Using this model, we find that 87-92% of the CO2 is sequestered as spherical, CO2-rich mantles, while typical interstellar ices show evidence of irregularly-shaped, hydrogen-rich mantles. We propose that (1) the nearly complete absence of unprocessed ices along the line-of-sight is due to the flattened envelope structure of HOPS-68, which lacks cold absorbing material in its outer envelope, and possesses an extreme concentration of material within its inner (10 AU) envelope region and (2) an energetic event led to the evaporation of inner envelope ices, followed by cooling and re-condensation, explaining the sequestration of spherical, CO2 ice mantles in a hydrogen-poor mixture. The mechanism responsible for the sublimation could be either a transient accretion event or shocks in the interaction region between the protostellar outflow and envelope. The proposed scenario is consistent with the rarity of the observed CO2 ice profile, the formation of nearly pure CO2 ice, and the production of spherical ice mantles. HOPS-68 may therefore provide a unique window into the protostellar feedback process, as outflows and heating shape the physical and chemical structure of protostellar envelopes and molecular clouds.
Surveys with the Spitzer and Herschel space observatories are now enabling the discovery and characterization of large samples of protostars in nearby molecular clouds, providing the observational basis for a detailed understanding of star formation in diverse environments. We are pursuing this goal with the Herschel Orion Protostar Survey (HOPS), which targets 328 Spitzer-identified protostars in the Orion molecular clouds, the largest star-forming region in the nearest 500 pc. The sample encompasses all phases of protostellar evolution and a wide range of formation environments, from dense clusters to relative isolation. With a grid of radiative transfer models, we fit the 1-870 micron spectral energy distributions (SEDs) of the protostars to estimate their envelope densities, cavity opening angles, inclinations, and total luminosities. After correcting the bolometric luminosities and temperatures of the sources for foreground extinction and inclination, we find a spread of several orders of magnitude in luminosity at all evolutionary states, a constant median luminosity over the more evolved stages, and a possible deficit of high-inclination, rapidly infalling envelopes among the Spitzer-identified sample. We have detected over 100 new sources in the Herschel images; some of them may fill this deficit. We also report results from modeling the pre- and post-outburst 1-870 micron SEDs of V2775 Ori (HOPS 223), a known FU Orionis outburster in the sample. It is the least luminous FU Ori star with a protostellar envelope.
Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. (2011) to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I 10830 absorption, strong H2O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from IRTF, 2MASS, HST, Spitzer, WISE, Herschel, and APEX that span from 1 to 70 microns pre-outburst and from 1 to 870 microns post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from about 2x10^-6 M_sun/yr to about 10^-5 M_sun/yr during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L_sun, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.
We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 microns superimposed on the broad 9.7 and 18 micron amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite. Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line-of-sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium (< 0.02-0.05). We propose that the amorphous silicates were annealed within the hot inner disk and/or envelope regions and subsequently transported outward into the envelope by entrainment in a protostellar outflow
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا