ترغب بنشر مسار تعليمي؟ اضغط هنا

We present genuine bulk Ir 5d jeff states of layered perovskite iridates obtained by hard-x-ray photoemission spectroscopy (HAXPES) with s- and p-polarized lights. HAXPES spectra of Sr2IrO4 and Ba2IrO4 are well reproduced by the quasi-particle densit ies of states calculated by the local density approximation with dynamical mean-field theory (LDA+DMFT). It is demonstrated that the insulating nature of the iridates is triggered by antiferromagnetic correlation (Slater type) combined with electron correlation (Mott type). The extremely-low-energy bulk-sensitive photoemission spectroscopy reveals bad metallic states in the paramagnetic phase of the iridates, suggesting strongly renormalized metallic states above the Neel temperature as predicted by the LDA+DMFT.
Several short-lived radionuclides (SLRs) were present in the early solar system, some of which should have formed just prior to or soon after the solar system formation. Stellar nucleosynthesis has been proposed as the mechanism for production of SLR s in the solar system, but no appropriate stellar source has been found to explain the abundances of all solar system SLRs. In this study, we propose a faint supernova with mixing and fallback as a stellar source of SLRs with mean lives of <5 Myr (26Al, 41Ca, 53Mn, and 60Fe) in the solar system. In such a supernova, the inner region of the exploding star experiences mixing, a small fraction of mixed materials is ejected, and the rest undergoes fallback onto the core. The modeled SLR abundances agree well with their solar system abundances if mixing-fallback occurs within the C/O-burning layer. In some cases, the initial solar system abundances of the SLRs can be reproduced within a factor of 2. The dilution factor of supernova ejecta to the solar system materials is ~10E-4 and the time interval between the supernova explosion and the formation of oldest solid materials in the solar system is ~1 Myr. If the dilution occurred due to spherically symmetric expansion, a faint supernova should have occurred nearby the solar system forming region in a star cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا