ترغب بنشر مسار تعليمي؟ اضغط هنا

Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual 31-P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmar king of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized 31-P nucleus of a single P donor in isotopically purified 28-Si. We find average gate fidelities of 99.95 % for the electron, and 99.99 % for the nuclear spin. These values are above certain error correction thresholds, and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware, and not the intrinsic behaviour of the qubit.
We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures, and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified $^{28}$Si-SOI layers using such structu res. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to $sim$ 2 V/$mu$m to be applied across the SOI layer. Utilizing this structure we measure the Stark shift parameters of arsenic donors embedded in the $^{28}$Si SOI layer and find a contact hyperfine Stark parameter of $eta_a=-1.9pm0.2times10^{-3} mu$m$^2$/V$^2$. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا