ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we study how CPT-odd Maxwell-Carroll-Field-Jackiw (MCFJ) electrodynamics as well as a dimension-5 extension of it affect the optical activity of continuous media. The starting point is dimension-3 MCFJ electrodynamics in matter whose mod ified Maxwell equations, permittivity tensor, and dispersion relations are recapitulated. Corresponding refractive indices are achieved in terms of the frequency and the vector-valued background field. For a purely timelike background, the refractive indices are real. Their associated propagation modes are circularly polarized and exhibit birefringence. For a purely spacelike background, one refractive index is always real and the other can be complex. The circularly polarized propagating modes may exhibit birefringence and dichroism (associated with absorption). Subsequently, we examine a dimension-five MCFJ-type electrodynamics, previously scrutinized in the literature, in a continuous medium. Following the same procedure, we find the refractive indices from a sixth-order dispersion equation. For a purely timelike background, three distinct refractive indices are obtained, one of them being real and two being complex. They are associated with two circularly polarized propagating modes that exhibit birefringence or dichroism, depending on the frequency range. Scenarios of propagation and absorption analogous to those found in dispersive dielectrics are also observed for spacelike background configurations. We conclude by comparing the dimension-three and five results and by emphasizing the richer phenomenology of the propagating modes in the higher-derivative model. Our results are applicable in the realm of Weyl semimetals.
G112-43/44, alias BD+00_2058 A and B, is a metal-poor ([Fe/H] = -1.3) wide-orbit binary star with extreme kinematics. We use high-precision determinations of the chemical compositions of 94 metal-poor dwarf stars in the solar neighbourhood to compare abundance ratios for G112-43/44 with ratios for stars having similar metallicity taking into account the effect of deviations from local thermodynamic equilibrium on the derived abundances, and Gaia EDR3 data are used to compare the kinematics. The abundances of the two components of G112-43/44 agree within 0.05 dex for nearly all elements, but there is a hint of a correlation of the difference in [X/H] with elemental condensation temperature, which may be due to planet-star interactions. The Mg/Fe, Si/Fe, Ca/Fe, and Ti/Fe ratios of G112-43/44 agree with the corresponding ratios for accreted (Gaia-Enceladus) stars, but Mn/Fe, Ni/Fe, Cu/Fe, and Zn/Fe are significantly enhanced. The kinematics show that G112-43/44 belongs to the Helmi streams in the solar neighbourhood and in view of this, we discuss if the abundance peculiarities of G112-43/44 can be explained by chemical enrichment from supernovae events in the progenitor dwarf galaxy of the Helmi streams. Interestingly, yields calculated for a helium shell detonation Type Ia supernova model can explain the enhancement of Mn/Fe, Ni/Fe, Cu/Fe, and Zn/Fe in G112-43/44 and three other alpha-poor stars in the Galactic halo, one of which have Helmi streams kinematics. The helium shell detonation model predicts, however, also enhanced abundance ratios of Ca/Fe, Ti/Fe, and Cr/Fe in disagreement with the observed ratios.
In order to better understand the minimal ingredients for thermal rectification, we perform a detailed investigation of a simple spin chain, namely, the open XX model with a Lindblad dynamics involving global dissipators. We use a Jordan-Wigner trans formation to derive a mathematical formalism to compute the heat currents and other properties of the steady state. We have rigorous results to prove the occurrence of thermal rectification even for slightly asymmetrical chains. Interestingly, we describe cases where the rectification does not decay to zero as we increase the system size, that is, the rectification remains finite in the thermodynamic limit. We also describe some numerical results for more asymmetrical chains. The presence of thermal rectification in this simple model indicates that the phenomenon is of general occurrence in quantum spin systems.
128 - S. Mendoza , S. Silva 2020
We show that the matter Lagrangian of an ideal fluid equals (up to a sign -depending on its definition and on the chosen signature of the metric) the total energy density of the fluid, i.e. rest energy density plus internal energy density.
In this work, new solutions for regular black holes that have multihorizons are proposed. These are formed by the direct product of solutions already published in the literature, which are described through the coupling of gravity with nonlinear elec trodynamics. We analyze the regularity of the spacetime, the electric field, and the energy conditions of each solution. The strong energy condition is always violated within the event horizon in all solutions, while other energy conditions depend on the ratio between extreme charges of isolated solutions. For solutions with four horizons, we present two examples, Bardeen-Culetu and Balart-Culetu. Both solutions are regular, but the first do not satisfy all the energy conditions, except the strong, because it has an extreme charge ratio of 1.57581, great value. The second solution, on the other hand, can satisfy all other energy conditions, except the SEC, and has an extreme charge ratio of 1.09915, a value that allows this feature. Its also proposed a regular solution with up to six horizons, Balart-Culetu-Dymnikova, where, for a given charge value, we can verify that it satisfies all energy conditions, except the strong one. This was possible due to the ratio between extreme charges that are neither too high nor too close. We propose solutions with any number of horizons. We show that points where $-F(r)$ has a non null minimum represent a cusp in the Lagrangian $-L(F)$. We also show an example of multihorizon solution with magnetic charge. Multihorizon solutions may exhibit exotic properties, such as negative energy density, or violation of energy conditions, but which can be circumvented with a selected choice of customized solutions and extreme charge values, resulting in regular black hole solutions that satisfy all energy conditions, less the strong.
We develop a number of novel black-bounce spacetimes. These are specific regular black holes where the area radius always remains non-zero, thereby leading to a throat that is either timelike (corresponding to a traversable wormhole), spacelike (corr esponding to a bounce into a future universe), or null (corresponding to a one-way wormhole). We shall first perform a general analysis of the regularity conditions for such a spacetime, and then consider a number of specific examples. The examples are constructed using a mass function similar to that of Fan--Wang, and fall into several particular cases, such as the original Simpson--Visser model, a Bardeen-type model, and other generalizations thereof. We shall analyse the regularity, the energy conditions, and the causal structure of these models. The main results are several new geometries, more complex than before, with two or more horizons, with the possibility of an extremal case. We shall derive a general theorem regarding static space-time regularity, and another general theorem regarding (non)-satisfaction of the classical energy conditions.
In recent years, Online Social Networks have become an important medium for people who suffer from mental disorders to share moments of hardship, and receive emotional and informational support. In this work, we analyze how discussions in Reddit comm unities related to mental disorders can help improve the health conditions of their users. Using the emotional tone of users writing as a proxy for emotional state, we uncover relationships between user interactions and state changes. First, we observe that authors of negative posts often write rosier comments after engaging in discussions, indicating that users emotional state can improve due to social support. Second, we build models based on SOTA text embedding techniques and RNNs to predict shifts in emotional tone. This differs from most of related work, which focuses primarily on detecting mental disorders from user activity. We demonstrate the feasibility of accurately predicting the users reactions to the interactions experienced in these platforms, and present some examples which illustrate that the models are correctly capturing the effects of comments on the authors emotional tone. Our models hold promising implications for interventions to provide support for people struggling with mental illnesses.
In this work, we have calculated the polar gravitational quasinormal modes for a quantum corrected black hole model, that arises in the context of Loop Quantum Gravity, known as Self-Dual Black Hole. In this way, we have calculated the characteristic frequencies using the WKB approach, where we can verify a strong dependence with the Loop Quantum Gravity parameters. At the same time we check that the Self-Dual Black Hole is stable under polar gravitational perturbations, we can also verify that the spectrum of the polar quasinormal modes differs from the axial one cite{Cruz:2015bcj}. Such a result tells us that isospectrality is broken in the context of Self Dual Black Holes.
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type of theory is known as Rainbow Gravity. We coupled the nonlinear electrodynamics to the Rainbow Gravity, defining a new mass function $M(r,epsilon)$, such that we may formulate new classes of spherically symmetric regular black hole solutions, where the curvature invariants are well-behaved in all spacetime. The main differences between the General Relativity and our results in the the Rainbow gravity are: a) The intensity of the electric field is inversely proportional to the energy scale. The higher the energy scale, the lower the electric field intensity; b) the region where the strong energy condition (SEC) is violated decrease as the energy scale increase. The higher the energy scale, closer to the radial coordinate origin SEC is violated.
In this work, we study the existence of regular black holes solutions with multihorizons in general relativity and in some alternative theories of gravity. We consider the coupling between the gravitational theory and nonlinear electrodynamics. The c oupling generates modifications in the electromagnetic sector. This paper has as main objective generalize solutions already known from general relativity to the $f(G)$ theory. To do that, we first correct some misprints of the Odintsov and Nojiris work in order to introduce the formalism that will be used in the $f(G)$ gravity. In order to satisfy all field equations, the method to find solutions in alternative theories generates different $f(R)$ and $f(G)$ functions for each solution, where only the nonlinear term of $f(G)$ contributes to the field equations. We also analyze the energy conditions, since it is expected that some must be violated to find regular black holes, and using an auxiliary field, we analyze the nonlinearity of the electromagnetic theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا