ترغب بنشر مسار تعليمي؟ اضغط هنا

We report measurements and analysis of magnetization, resistivity and thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide La$_{0.8}$Sr$_{0.2}$Co$_{1-x}$Rh$_x$O$_{3-delta}$. This system constitutes a solid solution for a full ran ge of $x$,in which the crystal structure changes from rhombohedral to orthorhombic symmetry with increasing Rh content $x$. The magnetization data reveal that the magnetic ground state immediately changes upon Rh substitution from ferromagnetic to paramagnetic with increasing $x$ near 0.25, which is close to the structural phase boundary. We find that one substituted Rh ion diminishes the saturation moment by 9 $mu_B$, which implies that one Rh$^{3+}$ ion makes a few magnetic Co$^{3+}$ ions nonmagnetic (the low spin state), and causes disorder in the spin state and the highest occupied orbital. In this disordered composition ($0.05le x le 0.75$), we find that the thermopower is anomalously enhanced below 50 K. In particular, the thermopower of $x$=0.5 is larger by a factor of 10 than those of $x$=0 and 1, and the temperature coefficient reaches 4 $mu$V/K$^2$ which is as large as that of heavy-fermion materials such as CeRu$_2$Si$_2$.
We report measurements and analyses of resistivity, thermopower, and thermal conductivity of polycrystalline samples of perovskite LaRh$_{1-x}$Ni$_x$O$_3$. The thermopower is found to be large at 800 K (185 $mu$V/K for $x=$0.3), which is ascribed to the high-temperature stability of the low-spin state of Rh$^{3+}$/Rh$^{4+}$ ions. This clearly contrasts with the thermopower of the isostructural oxide LaCoO$_3$, which rapidly decreases above 500 K owing to the spin-state transition. The spin state of the transition-metal ions is one of the most important parameters in oxide thermoelectrics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا