ترغب بنشر مسار تعليمي؟ اضغط هنا

Although enhanced conductivity at ferroelectric domain boundaries has been found in BiFeO$_3$ films, Pb(Zr,Ti)O$_3$ films, and hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO$_3$ thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO$_3$ films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes model tuned by the segregation of defects.
We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO3)n(LaAlO3)5 multilayers with n = 1-3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d^1 state of the Ti ions. In combination with LDA+U calculations, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t_{2g} states leaving only the planar d_xy orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t_{2g} 2D Hubbard model.
We have found that there is more than one type of conducting carriers generated in LaAlO3/SrTiO3 heterostructures by comparing the sheet carrier density and mobility from optical transmission spectroscopy with those from dc-transport measurements. Wh en multiple types of carriers exist, optical characterization dominantly reflects the contribution from the high-density carriers whereas dc-transport measurements may exaggerate the contribution of the high-mobility carriers even though they are present at low-density. Since the low-temperature mobilities determined by dc-transport in the LaAlO3/SrTiO3 heterostructures are much higher than those extracted by optical method, we attribute the origin of high-mobility transport to the low-density conducting carriers.
We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spe ctroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا