ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-based transit search missions such as Kepler are collecting large numbers of stellar light curves of unprecedented photometric precision and time coverage. However, before this scientific goldmine can be exploited fully, the data must be cleane d of instrumental artefacts. We present a new method to correct common-mode systematics in large ensembles of very high precision light curves. It is based on a Bayesian linear basis model and uses shrinkage priors for robustness, variational inference for speed, and a de-noising step based on empirical mode decomposition to prevent the introduction of spurious noise into the corrected light curves. After demonstrating the performance of our method on a synthetic dataset, we apply it to the first month of Kepler data. We compare the results, which are publicly available, to the output of the Kepler pipelines pre-search data conditioning, and show that the two generally give similar results, but the light curves corrected using our approach have lower scatter, on average, on both long and short timescales. We finish by discussing some limitations of our method and outlining some avenues for further development. The trend-corrected data produced by our approach are publicly available.
85 - S. Sabatini 2007
The nature of the dwarf galaxy population as a function of location in the cluster and within different environments is investigated. We have previously described the results of a search for low surface brightness objects in data drawn from an East-W est strip of the Virgo cluster (Sabatini et al., 2003) and have compared this to a large area strip outside of the cluster (Roberts et al., 2004). In this talk I compare the East-West data (sampling sub-cluster A and outward) to new data along a North-South cluster strip that samples a different region (part of sub-cluster A, and the N,M clouds) and with data obtained for the Ursa Major cluster and fields around the spiral galaxy M101. The sample of dwarf galaxies in different environments is obtained from uniform datasets that reach central surface brightness values of ~26 B mag/arcsec^2 and an apparent B magnitude of 21 (M_B=-10 for a Virgo Cluster distance of 16 Mpc). We discuss and interpret our results on the properties and distribution of dwarf low surface brightness galaxies in the context of variuos physical processes that are thought to act on galaxies as they form and evolve.
In order to investigate the contribution of diffuse components to their total HI emission, we have obtained high precision HI line flux densities with the 100m Green Bank Telescope for a sample of 100 isolated spiral and irregular galaxies which we h ave previously observed with the 43m telescope. A comparison of the observed HI line fluxes obtained with the two different telescopes, characterized by half-power beam widths of 9 arcmin and 21 arcmin respectively, exploits a ``beam matching technique to yield a statistical determination of the occurrence of diffuse HI components in their disks. A simple model of the HI distribution within a galaxy well describes ~75 % of the sample and accounts for all of the HI line flux density. The remaining galaxies are approximately evenly divided into two categories: ones which appear to possess a significantly more extensive HI distribution than the model predicts, and ones for which the HI distribution is more centrally concentrated than predicted. Examples of both extremes can be found in the literature but little attention has been paid to the centrally concentrated HI systems. Our sample has demonstrated that galaxies do not commonly possess extended regions of low surface brightness HI gas which is not accounted for by our current understanding of the structure of HI disks. Eight HI-rich companions to the target objects are identified, and a set of extragalactic HI line flux density calibrators is presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا