ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The inner disc, linking the thin disc with the bulge, has been somehow neglected in the past because of intrinsic difficulties in its study, due, e.g., to crowding and high extinction. Open clusters located in the inner disc are among the be st tracers of its chemistry at different ages and distances. Aims. We analyse the chemical patterns of four open clusters located within 7 kpc of the Galactic Centre and of field stars to infer the properties of the inner disc with the Gaia-ESO survey idr2/3 data release. Methods. We derive the parameters of the newly observed cluster, Berkeley 81, finding an age of about 1 Gyr and a Galactocentric distance of 5.4 kpc. We construct the chemical patterns of clusters and we compare them with those of field stars in the Solar neighbourhood and in the inner-disc samples. Results. Comparing the three populations we observe that inner-disc clusters and field stars are both, on average, enhanced in [O/Fe], [Mg/Fe] and [Si/Fe]. Using the idr2/3 results of M67, we estimate the non-local thermodynamic equilibrium (NLTE) effect on the abundances of Mg and Si in giant stars. After empirically correcting for NLTE effects, we note that NGC 6705 and Be 81 still have a high [{alpha}/Fe]. Conclusions. The location of the four open clusters and of the field population reveals that the evolution of the metallicity [Fe/H] and of [alpha/Fe] can be explained within the framework of a simple chemical evolution model: both [Fe/H] and [{alpha}/Fe] of Trumpler 20 and of NGC 4815 are in agreement with expectations from a simple chemical evolution model. On the other hand, NGC 6705, and at a lower level Berkeley 81, have higher [{alpha}/Fe] than expected for their ages, location in the disc, and metallicity. These differences might originate from local enrichment processes as explained in the inhomogeneous evolution framework.
89 - L. Spina , S. Randich , F. Palla 2014
Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star-forming region, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. 48 candidate members of Chamaeleon I have been observed with the high-resolution spectrograph UVES. We use the surface gravity, lithium line equivalent width and position in the Hertzsprung-Russell diagram to confirm the cluster members and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets, we confirm 15 high probability members. Considering the metallicity measurements for 9 of them, we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H]=-0.08+/-0.04 dex. This result is in agreement with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.
143 - L. Spina , S. Randich , F. Palla 2014
Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary s ystems.In spite of this, detailed abundance studies are currently available for relatively few regions. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly subsolar, with a mean [Fe/H]=-0.057+/-0.018 dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of ~60 M_Sun hydrogen-depleted material from the circumstellar disk.
In a recent study, based on homogeneous barium abundance measurements in open clusters, a trend of increasing [Ba/Fe] ratios for decreasing cluster age was reported. We present here further abundance determinations, relative to four other elements ha v- ing important s-process contributions, with the aim of investigating whether the growth found for [Ba/Fe] is or not indicative of a general property, shared also by the other heavy elements formed by slow neutron captures. In particular, we derived abundances for yttrium, zirconium, lanthanum and cerium, using equivalent widths measurements and the MOOG code. Our sample includes 19 open clusters of different ages, for which the spectra were obtained at the ESO VLT telescope, using the UVES spectrometer. The growth previously suggested for Ba is confirmed for all the elements analyzed in our study. This fact implies significant changes in our views of the Galactic chemical evolution for elements beyond iron. Our results necessarily require that very low-mass AGB stars (M < 1.5Modot) produce larger amounts of s-process elements (hence acti- vate the 13 C-neutron source more effectively) than previously expected. Their role in producing neutron-rich elements in the Galactic disk has been so far underestimated and their evolution and neutron-capture nucleosynthesis should now be reconsidered.
67 - V. DOrazi 2009
Determining the metal content of low-mass members of young associations provides a tool that addresses different issues, such as triggered star formation or the link between the metal-rich nature of planet-host stars and the early phases of planet fo rmation. The Orion complex is a well known example of possible triggered star formation and is known to host a rich variety of proto-planetary disks around its low-mass stars. Available metallicity measurements yield discrepant results. We analyzed FLAMES/UVES and Giraffe spectra of low-mass members of three groups/clusters belonging to the Orion association. Our goal is the homogeneous determination of the metallicity of the sample stars, which allows us to look for [Fe/H] differences between the three regions and for the possible presence of metal-rich stars. Nine members of the ONC and one star each in the $lambda$ Ori cluster and OB1b subgroup were analyzed. After the veiling determination, we retrieved the metallicity by means of equivalent widths and/or spectral synthesis using MOOG. We obtain an average metallicity for the ONC [Fe/H]=-0.01pm 0.04. No metal-rich stars were detected and the dispersion within our sample is consistent with measurement uncertainties. The metallicity of the $lambda$ Ori member is also solar, while the OB1b star has an [Fe/H] significantly below the ONC average. If confirmed by additional [Fe/H] determinations in the OB1b subgroup, this result would support the triggered star formation and the self-enrichment scenario for the Orion complex.
441 - P. Sestito 2008
Galactic open clusters are since long recognized as one of the best tools for investigating the radial distribution of iron and other metals. We employed FLAMES at VLT to collect UVES spectra of bright giant stars in a large sample of open clusters, spanning a wide range of Galactocentric distances, ages, and metallicities. We present here the results for four clusters: Berkeley 20 and Berkeley 29, the two most distant clusters in the sample; Collinder 261, the oldest and the one with the minimum Galactocentric distance; Melotte 66. Equivalent width analysis was carried out using the spectral code MOOG and Kurucz model atmospheres to derive abundances of Fe, Al, Mg, Si, Ca, Ti, Cr, Ni, Ba; non-LTE Na abundances were derived by direct line-profile fitting. We obtain subsolar metallicities for the two anticenter clusters Be 20 ([Fe/H]=-0.30, rms=0.02) and Be 29 ([Fe/H]=-0.31, rms=0.03), and for Mel 66 ([Fe/H]=-0.33, rms=0.03), located in the third Galactic quadrant, while Cr 261, located toward the Galactic center, has higher metallicity ([Fe/H]=+0.13, rms=0.05 dex). The alpha-elements Si, Ca and Ti, and the Fe-peak elements Cr and Ni are in general close to solar; the s-process element Ba is enhanced. Non-LTE computations of Na abundances indicate solar scaled values, suggesting that the enhancement in Na previously determined in giants in open clusters could be due to neglected non-LTE effects. Our results support the presence of a steep negative slope of the Fe radial gradient up to about 10-11 kpc from the Galactic center, while in the outer disk the [Fe/H] distribution seems flat. All the elemental ratios measured are in very good agreement with those found for disk stars of similar metallicity and no trend with Galactocentric distance seems to be present.
Aims. We performed a detailed membership selection and studied the accretion properties of low-mass stars in the two apparently very similar young (1-10 Myr) clusters sigma Ori and lambda Ori. Methods. We observed 98 and 49 low-mass (0.2-1.0 M_sun) stars in sigma Ori and lambda Ori respectively, using the multi-object optical spectrograph FLAMES at the VLT, with the high-resolution (R=17,000) HR15N grating (6470-6790 AA). We used radial velocities, Li and Halpha to establish cluster membership and Halpha and other optical emission lines to analyze the accretion properties of members. Results. We identified 65 and 45 members of the sigma Ori and lambda Ori clusters, respectively and discovered 16 new candidate binary systems. We also measured rotational broadening for 20 stars and estimated the mass accretion rates in 25 stars of the sigma Ori cluster, finding values between 10^-11 and 10^-7.7 M_sun yr^-1 and in 4 stars of the lambda Ori cluster, finding values between 10^-11 and 10^-10.1 M_sun yr-1. Comparing our results with the infrared photometry obtained by the Spitzer satellite, we find that the fraction of stars with disks and the fraction of active disks is larger in the sigma Ori cluster (52+-9% and 78+-16%) than in lambda Ori (28+-8% and 40+-20%) Conclusions. The different disk and accretion properties of the two clusters could be due either to the effect of the high-mass stars and the supernova explosion in the lambda Ori cluster or to different ages of the cluster populations. Further observations are required to draw a definitive conclusion.
Determinations of beryllium abundance in stars, together with lithium, provide a key tool to investigate the so far poorly understood extra-mixing processes at work in stellar interiors. We measured Be in three open clusters,complementing existing Be surveys, and aiming at gathering a more complete empirical scenario of the evolution of Be as a function of stellar age and temperature. Specifically, we analyzed VLT/UVES spectra of members of NGC 2516, the Hyades, and M 67 to determine their Be and Li abundances. In the first two clusters we focused on stars cooler than 5400 K, while the M 67 sample includes stars warmer than 6150 K, as well as two subgiants and two blue stragglers. We also computed the evolution of Be for a 0.9 Mo star based on standard evolutionary models. We find different emprical behaviours for stars in different temperature bins and ages. Stars warmer than 6150 K show Be depletion and follow a Be vs. Li correlation while Be is undepleted in stars in the ~6150-5600 K range. NGC 2516 members cooler than 5400 K have not depleted any Be, but older Hyades of similar temperature do show some depletion. Be is severely depleted in the subgiants and blue stragglers. The results for warm stars are in agreement with previous studies, supporting the hypothesis that mixing in this temperature regime is driven by rotation. The same holds for the two subgiants that have evolved from the Li gap. This mechanism is instead not the dominant one for solar-type stars. We show that Be depletion of cool Hyades cannot simply be explained by the effect of increasing depth of the convective zone. Finally, the different Be content of the two blue stragglers suggests that they have formed by two different processes (i.e., collisions vs. binary merging).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا