ترغب بنشر مسار تعليمي؟ اضغط هنا

The chiral helimagnet Cr1/3NbS2 has been investigated by magnetic, transport and thermal properties measurements on single crystals and by first principles electronic structure calculations. From the measured field and temperature dependence of the m agnetization for fields applied perpendicular to the c axis, the magnetic phase diagram has been constructed in the vicinity of the phase transitions. A transition from a paramagnetic to a magnetically ordered phase occurs near 120 K. With increasing magnetic field and at temperatures below 120 K, this material undergoes transitions from a helimagnetic to a soliton-lattice phase near 900 Oe, and then to a ferromagnetic phase near 1300 Oe. The transitions are found to strongly affect the electrical transport. The resistivity decreases sharply upon cooling near 120 K, and the spin reorientation from the helimagnetic ground state to the commensurate ferromagnetic state is evident in the magnetoresistance. At high fields a large magnetoresistance (55 % at 140 kOe) is observed near the magnetic transition temperature. Heat capacity and electronic structure calculations show the density of states at the Fermi level is low in the magnetically ordered state. Effects of spin fluctuations are likely important in understanding the behavior of Cr1/3NbS2 near and above the magnetic ordering transitions.
The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex it inerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا