ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - C. Abia , S. Palmerini , M. Busso 2012
We re-analysed the carbon and oxygen isotopic ratios in the atmospheres of the two bright K giants Arcturus and Aldebaran. Previous determinations of their 16O/18O ratios showed a rough agreement with FDU expectations; however, the estimated 16O/17O and 12C/13C ratios were lower than in the canonical predictions. These anomalies are interpreted as signs of the occurrence of non-convective mixing episodes. We re-investigated this issue in order to verify whether the observed data can be reproduced in this hypothesis and if the well determined properties of the two stars can help us in fixing the uncertain parameters characterizing non-convective mixing and its physical nature. We used high-resolution infrared spectra to derive the 12C/13C and 16O/17O/18O ratios from CO molecular lines near 5 mu. We also reconsidered the determination of the stellar parameters to build the proper atmospheric and evolutionary models. We found that both the C and the O isotopic ratios for the two stars considered actually disagree with pure FDU predictions. This reinforces the idea that non-convective transport episodes occurred in them. By reproducing the observed elemental and isotopic abundances with the help of parametric models of nucleosynthesis and mass circulation, we derived constraints on the properties of non convective mixing. We find that very slow mixing is incapable of explaining the observed data, which require a fast transport. Circulation mechanisms with speeds intermediate between those typical of diffusive and of convective mixing should be at play. We however conclude with a word of caution on the conclusions possible at this stage, as the parameters for the mass transport are rather sensitive to the stellar mass and initial composition.
The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the $^{26}$Al/$^{27}$Al ratio in presolar grain s of circumstellar origin. Non-convective mixing, occurring during both Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stages is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the $^{26}$Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of population I stars above about 1.2 $M_{odot}$, this consumes $^3$He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.
174 - R. Guandalini 2009
We present an analysis of Li abundances in low mass stars (LMS) during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stages, based on a new determination of their luminosities and evolutionary status. By applying recently suggested mod els for extra-mixing, induced by magnetic buoyancy, we show that both Li-rich and Li-poor stars can be accounted for. The simplest scenario implies the development of fast instabilities on the RGB, where Li is produced. When the fields increase in strength, buoyancy slows down and Li is destroyed. 3He is consumed, at variable rates. The process continues on the AGB, where however moderate mass circulation rates have little effect on Li due to the short time available. O-rich and C-rich stars show different histories of Li production/destruction, possibly indicative of different masses. More complex transport schemes are allowed by magnetic buoyancy, with larger effects on Li, but most normal LMS seem to show only the range of Li variation discussed here.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا