ترغب بنشر مسار تعليمي؟ اضغط هنا

Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A1g phonon mode in the Fe-pnictide parent compound BaFe2As2. The fluence dependent intensity oscillations of two specific Bragg reflect ions with distinctly different sensitivity to the pnictogen height in the compound allow us to quantify the coherent modifications of the Fe-As tetrahedra, indicating a transient increase of the Fe magnetic moments. By a comparison with time-resolved photoemission data we derive the electron-phonon deformation potential for this particular mode. The value of Delta mu/Delta z = -(1.0 - 1.5) eV/A is comparable with theoretical predictions and demonstrates the importance of this degree of freedom for the electron-phonon coupling in the Fe pnictides.
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni$_2$MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.
The antiferromagnetic (AFM) to ferromagnetic (FM) first order phase transition of an epitaxial FeRh thin-film has been studied with x-ray magnetic circular dichroism using photoemission electron microscopy. The FM phase is magnetized in-plane due to shape anisotropy, but the magnetocrystalline anisotropy is negligible and there is no preferred in-plane magnetization direction. When heating through the AFM to FM phase transition the nucleation of the FM phase occurs at many independent nucleation sites with random domain orientation. The domains subsequently align to form the final FM domain structure. We observe no pinning of the FM domain structure.
We use time-resolved optical reflectivity to study the laser stimulated dynamics in the magnetic shape memory alloy Ni_2MnGa. We observe two coherent optical phonons, at 1.2 THz in the martensite phase and at 0.7 THz in the pre-martensite phase, whic h we interpret as a zone-folded acoustic phonon and a heavily damped amplitudon respectively. In the martensite phase the martensitic phase transition can be induced by a fs laser pulse on a timescale of a few ps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا